

**Recombinant proteins** 

# 2023 price list

PeproTech cytokines, antibodies, and ELISA kits

gibco

# **Contents**

| GMP cytokines                                  | 3  |
|------------------------------------------------|----|
| Animal-free cytokines                          | 6  |
| Research use only (RUO) cytokines              | 9  |
| Antibodies                                     | 19 |
| ELISA kits                                     | 32 |
| Technical information                          |    |
| QC testing requirements                        | 41 |
| Chemokine nomenclature                         | 42 |
| FGF family                                     | 43 |
| TGF-β superfamily                              | 44 |
| Neurotrophin/neuropoietic cytokines            | 46 |
| TNF nomenclature                               | 47 |
| VEGF/PDGF family                               | 48 |
| Antagonists of TGF-β ligands                   | 49 |
| General characteristics of plasma lipoproteins | 49 |
| Classification of apoproteins                  | 49 |
| Technical FAQs                                 |    |
| RUO cytokines                                  | 50 |
| GMP cytokines                                  | 51 |
| ELISA                                          | 51 |
| Western transfer                               | 52 |
| Antibodies                                     | 53 |

**PEPROTECH**. PeproTech is now part of Thermo Fisher Scientific and these products are a and these products are now sold under the Gibco brand.

## **GMP cytokines** Helping unlock the promise of cellular therapies and regenerative medicine

In response to our clients' needs, and the requirements of the cell and gene therapy markets, Gibco<sup>™</sup> PeproTech<sup>™</sup> products are now manufactured in our state-of-the-art manufacturing facility in Cranbury, New Jersey.

The rapidly evolving field of regenerative medicine offers exciting opportunities to develop new solutions for an array of diseases, injuries, and genetic disorders. With the recent addition of the Cranbury manufacturing facility, Thermo Fisher Scientific is able to meet the demand of the advancing markets in cell, gene, and tissue therapies. This 65,000 sq. ft. facility has ample space for GMP cleanrooms and supports the manufacturing of our bacterially expressed GMP products and expansion into cell culture–derived GMP products.

Gibco<sup>™</sup> PeproTech<sup>™</sup> PeproGMP<sup>™</sup> cytokines are manufactured and tested in compliance with relevant US FDA GMP (Good Manufacturing Practices) regulations and the ISO 9001 quality management systems standard, without the use of animal-derived materials.

- Controlled certified ISO 7 and ISO 8 cleanrooms
- Qualification and validation program
- Materials management (Including supplier qualification, controlled and qualified raw materials)
- 100% traceability
- Personnel training program
- Environmental monitoring
- Equipment calibration and maintenance
- Rigorous quality control program
- Documentation control and records
- Stability program
- Controlled processes
- QA review and support
- · Master quality and supply agreement
- Aseptic techniques and sterile filtration
- Management review
- · Complaint and recall procedures





#### PeproTech PeproGMP cytokines

| Description                                  | Cat. No.         | Quantity        | Price         |
|----------------------------------------------|------------------|-----------------|---------------|
| PapraTash PapraCMP Human Astivity A          | GMP120-14E-50UG  | 50 µg           | \$672         |
| PeproTech PeproGMP Human Activin A           | GMP120-14E-100UG | 100 µg          | \$1,120       |
| PeproTech PeproGMP Human BMP-4               | GMP120-05ET-50UG | 50 µg           | \$1,176       |
|                                              | GMP200-02-50UG   | 50 µg           | \$420         |
| PeproTech PeproGMP Human IL-2                | GMP200-02-100UG  | 100 µg          | \$784         |
|                                              | GMP200-02-1MG    | 1 mg            | \$2,484       |
|                                              | GMP200-03-50UG   | 50 µg           | \$868         |
| PeproTech PeproGMP Human IL-3                | GMP200-03-100UG  | 100 µg          | \$1,624       |
|                                              | GMP200-03-1MG    | 1 mg            | Please inquir |
|                                              | GMP200-06-10UG   | 10 µg           | \$325         |
| PeproTech PeproGMP Human IL-6                | GMP200-06-100UG  | 100 µg          | \$1,624       |
|                                              | GMP200-07-50UG   | 50 µg           | \$1,344       |
| PeproTech PeproGMP Human IL-7                | GMP200-07-100UG  | 100 µg          | \$2,240       |
|                                              | GMP200-15-50UG   | 50 µg           | \$868         |
| PeproTech PeproGMP Human IL-15               | GMP200-15-100UG  | 100 µg          | \$1,624       |
|                                              | GMP200-21-50UG   | 50 µg           | \$1,344       |
| PeproTech PeproGMP Human IL-21               | GMP200-21-100UG  | 100 µg          | \$2,240       |
|                                              | GMP200-21-1MG    | 1 mg            | Please inquir |
|                                              | GMP100-15-100UG  | 100 µg          | \$504         |
| PeproTech PeproGMP Human EGF                 | GMP100-15-500UG  | 500 µg          | \$1,080       |
|                                              | GMP100-15-1MG    | 1 mg            | \$1,944       |
|                                              | GMP100-18B-25UG  | 25 μg           | \$269         |
| eproTech PeproGMP Human FGF-Basic            | GMP100-18B-100UG | 100 µg          | \$807         |
|                                              | GMP100-18B-1MG   | 1 mg            | \$3,960       |
|                                              | GMP300-19-50UG   | 50 μg           | \$975         |
| PeproTech PeproGMP Human Flt3-Ligand         | GMP300-19-100UG  | 100 µg          | \$1,624       |
|                                              | GMP300-19-1MG    | 1 mg            | Please inquir |
|                                              | GMP100-03-50UG   | 50 μg           | \$420         |
| PeproTech PeproGMP Human Heregulin β-1       | GMP100-03-100UG  | 100 µg          | \$784         |
|                                              | GMP100-03-1MG    | 1 mg            | Please inquir |
|                                              | GMP100-19-50UG   | 50 µg           | \$868         |
| PeproTech PeproGMP Human KGF                 | GMP100-19-100UG  | 100 µg          | \$1,624       |
|                                              | GMP100-19-1MG    | 1 mg            | Please inquir |
|                                              | GMP300-05-50UG   | 50 µg           | \$868         |
| PeproTech PeproGMP Human LIF                 | GMP300-05-100UG  | 100 µg          | \$1,624       |
|                                              | GMP100-13A-50UG  | 100 μg<br>50 μg | \$672         |
| PeproTech PeproGMP Human PDGF-AA             | GMP100-13A-300G  |                 | \$1,120       |
|                                              |                  | 100 µg          |               |
| PapraTach PapraGMP Human SCE                 | GMP300-07-50UG   | 50 µg           | \$868         |
| PeproTech PeproGMP Human SCF                 | GMP300-07-100UG  | 100 µg          | \$1,624       |
|                                              | GMP300-07-1MG    | 1 mg            | Please inquir |
| PeproTech PeproGMP Human TPO                 | GMP300-18-50UG   | 50 µg           | \$1,176       |
|                                              | GMP300-18-100UG  | 100 µg          | \$1,960       |
|                                              | GMP100-20-50UG   | 50 µg           | \$672         |
| PeproTech PeproGMP Human VEGF <sub>165</sub> | GMP100-20-100UG  | 100 µg          | \$1,120       |
|                                              | GMP100-20-1MG    | 1 mg            | \$7,560       |

We are continually adding new GMP products. Please contact **<u>PeproTech.GMP@thermofisher.com</u>** for our most up-to-date list of products.

#### Quality assurance and quality control

Our quality management system, from management of raw materials and equipment to facilities maintenance (environmental monitoring), manufacturing processes, audits, and inspection processes, is in compliance with relevant US FDA GMPs and all applicable regulatory and standards requirements. We perform extensive quality control testing to verify that PeproTech PeproGMP cytokines meet rigorous standards for purity, identity, safety, activity, and consistency.

We would love to share more about PeproTech PeproGMP cytokines with you. Please contact our quality assurance department at 800-436-9910, prompt number 4; or email us at **PeproTech.GMP@thermofisher.com** for more information.

# Cytokine packages

#### Gibco PeproTech dendritic cell cytokine packages

| Description                                            | Price | Description                                                           | Price   |
|--------------------------------------------------------|-------|-----------------------------------------------------------------------|---------|
| Human Dendritic Cell Cytokine Package<br>Cat. No. HDC  | \$972 | Animal-Free Human Dendritic Cell Cytokine Package<br>Cat. No. AF-HDC  | \$1,080 |
| Includes 2 vials:                                      |       | Includes 2 vials:                                                     |         |
| • Human IL-4, 100 μg                                   |       | <ul> <li>Animal-Free Human IL-4, 100 μg</li> </ul>                    |         |
| • Human GM-CSF, 100 µg                                 |       | • Animal-Free Human GM-CSF, 100 µg                                    |         |
| Murine Dendritic Cell Cytokine Package<br>Cat. No. MDC | \$972 | Animal-Free Murine Dendritic Cell Cytokine Package<br>Cat. No. AF-MDC | \$1,080 |
| Includes 2 vials:                                      |       | Includes 2 vials:                                                     |         |
| • Murine IL-4, 100 μg                                  |       | • Animal-Free Murine IL-4, 100 µg                                     |         |
| • Murine GM-CSF, 100 µg                                |       | • Animal-Free Murine GM-CSF, 100 µg                                   |         |

#### Gibco PeproTech hematopoietic stem cell expansion cytokine packages

| Description                                                                           | Price   | Description                                                                                                                                                                      | Price   |
|---------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Human Hematopoietic Stem Cell Expansion<br>Cytokine Package<br>Cat. No. HHSC3         | \$2,106 | Animal-Free Human Hematopoietic Stem Cell Expansion<br>Cytokine Package<br>Cat. No. AF-HHSC3                                                                                     | \$2,574 |
| Includes 4 vials:                                                                     |         | Includes 4 vials:                                                                                                                                                                |         |
| <ul> <li>Human Flt3-Ligand, 100 μg</li> </ul>                                         |         | • Animal-Free Human Flt3-Ligand, 100 µg                                                                                                                                          |         |
| • Human SCF, 100 µg                                                                   |         | • Animal-Free Human SCF, 100 µg                                                                                                                                                  |         |
| • Human TPO, 100 µg                                                                   |         | • Animal-Free Human TPO, 100 µg                                                                                                                                                  |         |
| • Human IL-3, 10 μg                                                                   |         | • Animal-Free Human IL-3, 10 µg                                                                                                                                                  |         |
| Human Hematopoietic Stem Cell Expansion<br>Cytokine Package<br>Cat. No. HHSC6         | \$2,106 | Animal-Free Human Hematopoietic Stem Cell Expansion<br>Cytokine Package<br>Cat. No. AF-HHSC6                                                                                     | \$2,574 |
| Includes 4 vials:                                                                     |         | Includes 4 vials:                                                                                                                                                                |         |
| <ul> <li>Human Flt3-Ligand, 100 μg</li> </ul>                                         |         | • Animal-Free Human Flt3-Ligand, 100 µg                                                                                                                                          |         |
| • Human SCF, 100 µg                                                                   |         | • Animal-Free Human SCF, 100 µg                                                                                                                                                  |         |
| • Human TPO, 100 µg                                                                   |         | • Animal-Free Human TPO, 100 µg                                                                                                                                                  |         |
| <ul> <li>Human IL-6, 20 μg</li> </ul>                                                 |         | • Animal-Free Human IL-6, 20 µg                                                                                                                                                  |         |
| Murine Hematopoietic Stem Cell Expansion<br>Cytokine Package (IL-3)<br>Cat. No. MHSC3 | \$2,106 | Murine Hematopoietic Stem Cell Expansion<br>Cytokine Package (IL-6)<br>Cat. No. MHSC6<br>Contains the key components required for <i>ex vivo</i> mouse hematopoietic stem cells. | \$2,106 |
| Includes 4 vials:                                                                     |         | Includes 4 vials:                                                                                                                                                                |         |
| <ul> <li>Murine Flt3-Ligand, 100 μg</li> </ul>                                        |         | <ul> <li>Murine Flt3-Ligand, 100 μg</li> </ul>                                                                                                                                   |         |
| • Murine SCF, 100 μg                                                                  |         | • Murine SCF, 100 μg                                                                                                                                                             |         |
| • Murine TPO, 100 µg                                                                  |         | • Murine TPO, 100 µg                                                                                                                                                             |         |
| • Murine IL-3, 10 μg                                                                  |         | • Murine IL-6, 10 μg                                                                                                                                                             |         |

# Animal-free cytokines

Gibco<sup>™</sup> PeproTech<sup>™</sup> animal-free cytokines are designed to minimize potential variables associated with the use of animal-derived manufacturing components. Production protocols have been modified to include only animal-free reagents and chemicals, while maintaining high biological activity and purity identical to those of the corresponding proteins produced using standard techniques.

Our E. coli-derived animal-free cytokines are manufactured under strict animal-free manufacturing conditions in dedicated animal-free labs.

Glycosylated and fully biologically active, our cell culture-derived animal-free cytokines are manufactured in our Cranbury, New Jersey, facility, using animal-free raw materials and expression systems consisting of serum-free, animal-free, chemically defined media.

#### PeproTech animal-free cytokines

| Description                       | Cat. No.    | Size A        | Size B        | Price per mg  |
|-----------------------------------|-------------|---------------|---------------|---------------|
| Human/Murine/Rat Activin A        | AF-120-14E  | 2 µg: \$107   | 10 µg: \$241  | 1 mg: \$4,644 |
| Human Apo-SAA1                    | AF-300-53   | 10 µg: \$107  | 50 µg: \$241  | 1 mg: \$1,782 |
| Human Artemin                     | AF-450-17   | 5 µg: \$107   | 20 µg: \$241  | 1 mg: \$3,564 |
| luman 4-1BB Ligand                | AF-310-11   | 5 µg: \$107   | 20 µg: \$241  | 1 mg: \$3,564 |
| luman BAFF                        | AF-310-13   | 5 µg: \$107   | 20 µg: \$241  | 1 mg: \$6,156 |
| Aurine BD-3                       | AF-250-41   | 5 µg: \$107   | 20 µg: \$241  | 1 mg: \$3,564 |
| luman BD-5                        | AF-300-68   | 5 µg: \$107   | 20 µg: \$241  | 1 mg: \$3,564 |
| luman/Murine/Rat BDNF             | AF-450-02   | 2 µg: \$107   | 10 µg: \$241  | 1 mg: \$6,156 |
| luman/Murine/Rat BMP-2            | AF-120-02   | 2 µg: \$107   | 10 µg: \$241  | 1 mg: \$4,644 |
| luman BMP-4                       | AF-120-05ET | 2 µg: \$107   | 10 µg: \$241  | 1 mg: \$4,644 |
| luman BMP-13/CDMP-2               | AF-120-04   | 10 µg: \$107  | 50 µg: \$241  | 1 mg: \$1,782 |
| łuman C5a                         | AF-300-70   | 5 µg: \$107   | 20 µg: \$241  | 1 mg: \$3,564 |
| luman sCD40 Ligand                | AF-310-02   | 10 µg: \$107  | 50 µg: \$241  | 1 mg: \$1,782 |
| luman CNTF                        | AF-450-13   | 5 µg: \$107   | 20 µg: \$241  | 1 mg: \$3,564 |
| Rat CNTF                          | AF-450-50   | 5 µg: \$107   | 25 µg: \$241  | 1 mg: \$3,564 |
| luman EGF                         | AF-100-15   | 100 µg: \$90  | 500 µg: \$195 | 1 mg: \$270   |
| /urine EGF                        | AF-315-09   | 100 µg: \$107 | 500 µg: \$233 | 1 mg: \$297   |
| Rat EGF                           | AF-400-25   | 20 µg: \$107  | 100 µg: \$241 | 1 mg: \$1,296 |
| luman Enterokinase                | AF-450-48C  | 10 µg: \$87   | 50 µg: \$211  | 1 mg: \$1,782 |
| łuman Eotaxin (CCL11)             | AF-300-21   | 5 µg: \$87    | 20 µg: \$241  | 1 mg: \$3,564 |
| luman Epiregulin                  | AF-100-04   | 5 µg: \$87    | 25 µg: \$241  | 1 mg: \$3,564 |
| luman FGF-Acidic                  | AF-100-17A  | 10 µg: \$87   | 50 µg: \$241  | 1 mg: \$1,782 |
| Bovine FGF-Basic                  | AF-450-62   | 10 µg: \$107  | 50 µg: \$241  | 1 mg: \$918   |
| luman FGF-Basic (154 amino acids) | AF-100-18B  | 10 µg: \$107  | 50 µg: \$241  | 1 mg: \$935   |
| luman FGF-Basic (146 amino acids) | AF-100-18C  | 10 µg: \$107  | 50 µg: \$241  | 1 mg: \$1,430 |
| Iurine FGF-Basic                  | AF-450-33   | 10 µg: \$107  | 50 µg: \$241  | 1 mg: \$1,782 |
| luman FGF-4                       | AF-100-31   | 5 µg: \$107   | 25 µg: \$241  | 1 mg: \$3,564 |
| luman FGF-6                       | AF-100-30   | 5 µg: \$107   | 25 µg: \$241  | 1 mg: \$3,564 |
| łuman/Murine FGF-8b               | AF-100-25   | 5 µg: \$107   | 25 µg: \$241  | 1 mg: \$3,564 |
| luman FGF-9                       | AF-100-23   | 5 µg: \$107   | 20 µg: \$241  | 1 mg: \$4,644 |
| luman FGF-10                      | AF-100-26   | 5 µg: \$107   | 25 µg: \$241  | 1 mg: \$3,564 |
| luman FGF-18                      | AF-100-28   | 5 µg: \$107   | 25 µg: \$241  | 1 mg: \$3,564 |
| luman FGF-19                      | AF-100-32   | 5 µg: \$107   | 25 µg: \$241  | 1 mg: \$3,564 |
| luman FGF-21                      | AF-100-42   | 5 µg: \$107   | 25 µg: \$241  | 1 mg: \$3,564 |
| łuman Flt3-Ligand                 | AF-300-19   | 2 µg: \$107   | 10 µg: \$241  | 1 mg: \$4,644 |
| luman G-CSF                       | AF-300-23   | 2 µg: \$107   | 10 µg: \$241  | 1 mg: \$4,644 |
| Iurine G-CSF                      | AF-250-05   | 2 µg: \$107   | 10 µg: \$241  | 1 mg: \$4,644 |
| luman GDF-3                       | AF-120-22   | 5 µg: \$107   | 20 µg: \$241  | 1 mg: \$4,644 |
| luman GDF-5 (BMP-14/CDMP-1)       | AF-120-01   | 10 µg: \$107  | 50 µg: \$241  | 1 mg: \$1,782 |
| Human GDNF                        | AF-450-10   | 2 µg: \$107   | 10 µg: \$241  | 1 mg: \$6,156 |

## PeproTech animal-free cytokines

| Description                         | Cat. No.               | Size A                     | Size B        | Price per mg                   |
|-------------------------------------|------------------------|----------------------------|---------------|--------------------------------|
| Murine GDNF                         | AF-450-44              | 2 µg: \$87                 | 10 µg: \$211  | 1 mg: \$6,156                  |
| Rat GDNF                            | AF-450-51              | 2 µg: \$87                 | 10 µg: \$211  | 1 mg: \$6,156                  |
| Human GM-CSF                        | AF-300-03              | 5 µg: \$107                | 20 µg: \$241  | 1 mg: \$3,780                  |
| Murine GM-CSF                       | AF-315-03              | 5 µg: \$107                | 20 µg: \$241  | 1 mg: \$3,780                  |
| Rat GM-CSF                          | AF-400-23              | 5 µg: \$107                | 20 µg: \$241  | 1 mg: \$3,780                  |
| Human GRO-α/MGSA (CXCL1)            | AF-300-11              | 5 µg: \$107                | 25 µg: \$241  | 1 mg: \$3,564                  |
| Human Growth Hormone                | AF-100-40              | 10 µg: \$107               | 50 µg: \$241  | 1 mg: \$918                    |
| Human Heregulin β-1                 | AF-100-03              | 10 µg: \$107               | 50 µg: \$241  | 1 mg: \$1,782                  |
| Human IFN-β                         | AF-300-02B             | 5 µg: \$107                | 20 µg: \$241  | 1 mg: \$3,564                  |
| Human IFN-γ                         | AF-300-02              | 20 µg: \$107               | 100 µg: \$241 | 1 mg: \$1,296                  |
| Murine IFN-γ                        | AF-315-05              | 20 µg: \$107               | 100 µg: \$241 | 1 mg: \$1,296                  |
|                                     | AF-300-02L             | 5 µg: \$107                | 20 µg: \$241  | 1 mg: \$3,564                  |
| Human IGF-I                         | AF-100-11              | 100 µg: \$107              | 500 µg: \$233 | 1 mg: \$297                    |
| Human IGF-I LR3                     | AF-100-11R3            | 200 µg: \$103              | NA            | 1 mg: \$233                    |
| Human IGF-II                        | AF-100-12              | 10 µg: \$107               | 50 µg: \$241  | 1 mg: \$1,782                  |
| Human IGF-BP3                       | AF-100-08              | 5 μg: \$107                | 25 µg: \$241  | 1 mg: \$3,564                  |
| Human IGF-BP7                       | AF-350-09              | 5 μg: \$107                | 25 µg: \$241  | 1 mg: \$3,564                  |
| Human IL-1a                         | AF-200-01A             | 2 μg: \$107                | 10 µg: \$241  | 1 mg: \$4,644                  |
| Human IL-1β                         | AF-200-01A             | 2 μg: \$107                | 10 µg: \$241  | 1 mg: \$4,644                  |
| Aurine IL-1β                        | AF-211-11B             | 2 μg: \$107                | 10 µg: \$241  | 1 mg: \$4,644                  |
| łuman IL-1RA                        | AF-200-01RA            | 20 µg: \$107               | 100 µg: \$241 | 1 mg: \$1,296                  |
| Human IL-2                          | AF-200-02              | 10 µg: \$107               | 50 µg: \$241  | 1 mg: \$918                    |
| Aurine IL-2                         | AF-212-12              | 5 μg: \$107                | 20 µg: \$241  | 1 mg: \$3,348                  |
| Rat IL-2                            | AF-400-02              | 5 μg: \$107                | 20 µg: \$241  | 1 mg: \$3,348                  |
| luman IL-3                          | AF-200-03              | 2 μg: \$107                | 10 µg: \$241  | 1 mg: \$3,564                  |
| Aurine IL-3                         | AF-213-13              | 2 μg: \$107<br>2 μg: \$107 | 10 µg: \$241  | 1 mg: \$3,564                  |
| luman IL-4                          | AF-200-04              | 2 μg: \$107<br>5 μg: \$107 | 20 µg: \$241  | 1 mg: \$3,780                  |
| Aurine IL-4                         | AF-214-14              | 5 μg: \$107                | 20 µg: \$241  | 1 mg: \$3,780                  |
| luman IL-5                          | AF-200-05              |                            |               | -                              |
| luman IL-6                          | AF-200-05              | 2 µg: \$107                | 10 µg: \$241  | 1 mg: \$5,076<br>1 mg: \$3,564 |
| Iurina IL-6                         | AF-200-00<br>AF-216-16 | 5 µg: \$107                | 20 µg: \$241  |                                |
|                                     |                        | 2 µg: \$107                | 10 µg: \$241  | 1 mg: \$3,564                  |
| luman IL-7                          | AF-200-07              | 2 µg: \$107                | 10 µg: \$241  | 1 mg: \$6,156                  |
| luman IL-8 (CXCL8) (72 amino acids) | AF-200-08M             | 5 µg: \$107                | 25 µg: \$241  | 1 mg: \$3,564                  |
| luman IL-9                          | AF-200-09              | 2 µg: \$107                | 10 µg: \$241  | 1 mg: \$6,156                  |
| luman IL-10                         | AF-200-10              | 2 µg: \$107                | 10 µg: \$241  | 1 mg: \$6,156                  |
| Aurine IL-10                        | AF-210-10              | 2 µg: \$107                | 10 µg: \$241  | 1 mg: \$6,156                  |
| luman IL-11                         | AF-200-11              | 2 µg: \$107                | 10 µg: \$241  | 1 mg: \$6,156                  |
| luman IL-13                         | AF-200-13              | 2 µg: \$107                | 10 µg: \$241  | 1 mg: \$6,156                  |
| luman IL-15                         | AF-200-15              | 2 µg: \$107                | 10 µg: \$241  | 1 mg: \$4,644                  |
| luman IL-16 (121 amino acids)       | AF-200-16A             | 2 µg: \$107                | 10 µg: \$241  | 1 mg: \$6,156                  |
| łuman IL-17A                        | AF-200-17              | 5 µg: \$107                | 25 µg: \$241  | 1 mg: \$3,564                  |
| luman IL-17D                        | AF-200-27              | 5 µg: \$107                | 25 µg: \$241  | 1 mg: \$3,564                  |
| Human IL-17E                        | AF-200-24              | 5 µg: \$107                | 25 µg: \$241  | 1 mg: \$3,564                  |
| Human IL-17F                        | AF-200-25              | 5 µg: \$107                | 25 µg: \$241  | 1 mg: \$3,564                  |
| łuman IL-21                         | AF-200-21              | 2 µg: \$107                | 10 µg: \$241  | 1 mg: \$6,156                  |
| Iurine IL-21                        | AF-210-21              | 2 µg: \$107                | 10 µg: \$241  | 1 mg: \$6,156                  |
| luman IL-22                         | AF-200-22              | 2 µg: \$107                | 10 µg: \$241  | 1 mg: \$6,156                  |
| Iurine IL-22                        | AF-210-22              | 2 µg: \$107                | 10 µg: \$241  | 1 mg: \$6,156                  |
| luman IL-33                         | AF-200-33              | 2 µg: \$107                | 10 µg: \$241  | 1 mg: \$6,156                  |
| łuman IL-36γ (IL-1F9)               | AF-200-36G             | 2 µg: \$107                | 10 µg: \$241  | 1 mg: \$6,156                  |
| łuman IL-37 (IL-1F7)                | AF-200-39              | 5 µg: \$107                | 25 µg: \$241  | 1 mg: \$3,564                  |
| luman I-TAC (CXCL11)                | AF-300-46              | 5 µg: \$107                | 20 µg: \$241  | 1 mg: \$3,564                  |
| luman KGF (FGF-7)                   | AF-100-19              | 2 µg: \$107                | 10 µg: \$241  | 1 mg: \$6,156                  |
| łuman Leptin                        | AF-300-27              | 200 µg: \$103              | 1 mg: \$233   | 5 mg: \$594                    |
| Aurine Leptin                       | AF-450-31              | 200 µg: \$103              | 1 mg: \$233   | 5 mg: \$594                    |
| luman LIF                           | AF-300-05              | 5 µg: \$107                | 25 µg: \$241  | 1 mg: \$3,348                  |
| Aurine LIF                          | AF-250-02              | 5 µg: \$107                | 25 µg: \$241  | 1 mg: \$3,348                  |

## PeproTech animal-free cytokines

| Description                          | Cat. No.   | Size A       | Size B        | Price per mg  |
|--------------------------------------|------------|--------------|---------------|---------------|
| Murine LIGHT                         | AF-315-12  | 5 µg: \$107  | 20 µg: \$241  | 1 mg: \$3,564 |
| Human MCP-1 (CCL2)                   | AF-300-04  | 5 µg: \$107  | 20 µg: \$241  | 1 mg: \$3,564 |
| Human MCP-2 (CCL8)                   | AF-300-15  | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$3,564 |
| Human M-CSF                          | AF-300-25  | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$5,076 |
| Murine M-CSF                         | AF-315-02  | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$5,076 |
| Rat M-CSF                            | AF-400-28  | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$6,156 |
| Human MIP-1α (CCL3)                  | AF-300-08  | 5 µg: \$107  | 20 µg: \$241  | 1 mg: \$3,564 |
| Human β-NGF                          | AF-450-01  | 20 µg: \$107 | 100 µg: \$241 | 1 mg: \$1,296 |
| Murine Noggin                        | AF-250-38  | 5 µg: \$107  | 20 µg: \$241  | 1 mg: \$4,644 |
| Human NT-3                           | AF-450-03  | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$6,156 |
| Human NT-4                           | AF-450-04  | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$6,156 |
| Human Oncostatin M (209 amino acids) | AF-300-10T | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$6,156 |
| Human PDGF-AA                        | AF-100-13A | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$4,644 |
| Human PDGF-BB                        | AF-100-14B | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$4,644 |
| Human PIGF-1                         | AF-100-06  | 5 µg: \$107  | 25 µg: \$241  | 1 mg: \$3,564 |
| Human sRANK Ligand                   | AF-310-01  | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$6,156 |
| Human RANTES (CCL5)                  | AF-300-06  | 5 µg: \$107  | 20 µg: \$241  | 1 mg: \$3,564 |
| Human SCF                            | AF-300-07  | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$2,808 |
| Murine SCF                           | AF-250-03  | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$2,808 |
| Rat SCF                              | AF-400-22  | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$3,564 |
| Human SDF-1α (CXCL12)                | AF-300-28A | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$3,564 |
| Human SDF-1β (CXCL12)                | AF-300-28B | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$3,564 |
| Human sTNF Receptor Type I           | AF-310-07  | 5 µg: \$107  | 20 µg: \$241  | 1 mg: \$3,564 |
| Human TECK (CCL25)                   | AF-300-45  | 5 µg: \$107  | 20 µg: \$241  | 1 mg: \$3,564 |
| Human TGF-a                          | AF-100-16A | 20 µg: \$107 | 100 µg: \$241 | 1 mg: \$1,296 |
| Human TGF-β1                         | AF-100-21C | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$6,156 |
| Human TGF-β3                         | AF-100-36E | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$6,156 |
| Human TL-1A                          | AF-310-23  | 5 µg: \$107  | 20 µg: \$241  | 1 mg: \$3,564 |
| Human TNF-α                          | AF-300-01A | 10 µg: \$107 | 50 µg: \$241  | 1 mg: \$1,782 |
| Murine TNF-a                         | AF-315-01A | 5 µg: \$107  | 20 µg: \$241  | 1 mg: \$3,564 |
| Human TPO                            | AF-300-18  | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$5,076 |
| Murine TPO                           | AF-315-14  | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$5,076 |
| Rat TPO                              | AF-400-34  | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$5,076 |
| Human TWEAK                          | AF-310-06  | 5 µg: \$107  | 25 µg: \$241  | 1 mg: \$3,564 |
| Human VEGF <sub>121</sub>            | AF-100-20A | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$4,644 |
| Human VEGF <sub>165</sub>            | AF-100-20  | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$4,644 |
| Murine VEGF <sub>165</sub>           | AF-450-32  | 2 µg: \$107  | 10 µg: \$241  | 1 mg: \$4,644 |
| Human Vitronectin                    | AF-140-09  | 2 µg: \$107  | 10 µg: \$233  | 1 mg: \$297   |

# Research use only (RUO) cytokines

Full-length and fully biologically active RUO cytokines are developed in-house by our experienced protein scientists. The process starts in our molecular biology labs with gene design and expression, and continues to cell banking, fermentation/cell culture, purification, QC testing, and finally QA release.

| Description                   | Cat. No. | Size A       | Size B        | Price per mg  | Source       |
|-------------------------------|----------|--------------|---------------|---------------|--------------|
| Human/Murine/Rat Activin A    | 120-14   | 2 µg: \$87   | 10 µg: \$211  | 1 mg: \$7,020 | Insect cells |
| Human/Murine/Rat Activin A    | 120-14E  | 2 µg: \$87   | 10 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| Human/Murine/Rat Activin A    | 120-14P  | 2 µg: \$87   | 10 µg: \$211  | 1 mg: \$5,616 | CHO cells    |
| Human Adiponectin             | 450-24   | 5 µg: \$87   | 25 µg: \$211  | 1 mg: \$5,616 | Insect cells |
| Murine Adiponectin            | 315-26   | 5 µg: \$87   | 25 µg: \$211  | 1 mg: \$5,616 | Insect cells |
| Aeromonas Aminopeptidase      | 100-10   | 100 µg: \$87 | 500 µg: \$211 | 1 mg: \$270   | E. coli      |
| Human AITRL                   | 310-22   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$5,616 | E. coli      |
| Human Amphiregulin            | 100-55B  | 10 µg: \$87  | 50 µg: \$211  | 1 mg: \$1,620 | E. coli      |
| Murine Amphiregulin           | 315-36   | 10 µg: \$87  | 50 µg: \$211  | 1 mg: \$1,620 | E. coli      |
| Human ANG-1                   | 130-06   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$5,616 | HeLa cells   |
| Human ANG-2                   | 130-07   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$5,616 | CHO cells    |
| Human ANGPTL-3                | 130-18   | 10 µg: \$87  | 50 µg: \$211  | 1 mg: \$1,620 | CHO cells    |
| Human ANGPTL-7                | 130-22   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$5,616 | Insect cells |
| Human ApoA-I                  | 350-11   | 20 µg: \$87  | 100 µg: \$211 | 1 mg: \$1,188 | E. coli      |
| Human ApoE2                   | 350-12   | 100 µg: \$87 | 500 µg: \$211 | 1 mg: \$378   | E. coli      |
| Human ApoE3                   | 350-02   | 100 µg: \$88 | 500 µg: \$215 | 1 mg: \$378   | E. coli      |
| Human ApoE4                   | 350-04   | 100 µg: \$88 | 500 µg: \$215 | 1 mg: \$378   | E. coli      |
| Human Apo-SAA                 | 300-13   | 10 µg: \$87  | 50 µg: \$211  | 1 mg: \$864   | E. coli      |
| Human Apo-SAA1                | 300-53   | 10 µg: \$87  | 50 µg: \$211  | 1 mg: \$1,512 | E. coli      |
| Human APRIL                   | 310-10C  | 2 µg: \$87   | 10 µg: \$211  | 1 mg: \$5,616 | Insect cells |
| Murine APRIL                  | 315-13   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Lysobacter enzymogenes Arg-C  | 450-54   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | Insect cells |
| Mycoplasma Arginine Deiminase | 150-12   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human Artemin                 | 450-17   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Murine Artemin                | 450-58   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human 4-1BB Ligand            | 310-11   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human 4-1BB Receptor          | 310-15   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human B7-1 Fc                 | 310-32   | 20 µg: \$87  | 100 µg: \$211 | 1 mg: \$1,188 | CHO cells    |
| Human B7-2 Fc                 | 310-33   | 20 µg: \$87  | 100 µg: \$211 | 1 mg: \$1,188 | CHO cells    |
| Human B7-H2 Fc                | 310-37   | 20 µg: \$87  | 100 µg: \$211 | 1 mg: \$1,188 | CHO cells    |
| Human BAFF                    | 310-13   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$5,616 | E. coli      |
| Human BAFF Receptor           | 310-13R  | 10 µg: \$87  | 50 µg: \$211  | 1 mg: \$1,620 | E. coli      |
| Human BCA-1 (CXCL13)          | 300-47   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Murine BCA-1/BLC (CXCL13)     | 250-24   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human BCMA                    | 310-16   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$5,616 | E. coli      |
| Human BD-1 (36 amino acids)   | 300-51   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human BD-1 (47 amino acids)   | 300-51A  | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Murine BD-1                   | 250-44   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human BD-2                    | 300-49   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Murine BD-2                   | 250-40   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human BD-3                    | 300-52   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Murine BD-3                   | 250-41   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human BD-4                    | 300-65   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human BD-5                    | 300-68   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human/Murine/Rat BDNF         | 450-02   | 2 µg: \$87   | 10 µg: \$211  | 1 mg: \$5,616 | E. coli      |
| Human Betacellulin            | 100-50   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Murine Betacellulin           | 315-21   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
|                               |          |              |               |               |              |

| Description                            | Cat. No.  | Size A       | Size B        | Price per mg  | Source       |
|----------------------------------------|-----------|--------------|---------------|---------------|--------------|
| luman/Murine/Rat BMP-2                 | 120-02C   | 2 µg: \$87   | 10 µg: \$211  | 1 mg: \$5,616 | CHO cells    |
| luman BMP-3                            | 120-24B   | 10 µg: \$87  | 50 µg: \$211  | 1 mg: \$1,620 | E. coli      |
| uman BMP-4                             | 120-05    | 1 µg: \$87   | 5 µg: \$211   | 1 mg: \$7,560 | HeLa cells   |
| uman BMP-4                             | 120-05ET  | 2 µg: \$87   | 10 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| urine BMP-4                            | 315-27    | 2 µg: \$87   | 10 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| uman BMP-5                             | 120-39    | 2 µg: \$87   | 10 µg: \$211  | 1 mg: \$4,212 | CHO cells    |
| uman BMP-6                             | 120-06    | 2 µg: \$87   | 10 µg: \$211  | 1 mg: \$5,616 | HEK293 cells |
| uman BMP-7                             | 120-03P   | 2 µg: \$87   | 10 µg: \$211  | 1 mg: \$5,616 | CHO cells    |
| luman BMP-10                           | 120-40    | 2 µg: \$87   | 10 µg: \$211  | 1 mg: \$4,212 | HEK293 cells |
| luman BMP-13/CDMP-2                    | 120-04    | 10 µg: \$87  | 50 µg: \$211  | 1 mg: \$1,620 | E. coli      |
| luman BRAK (CXCL14)                    | 300-50    | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| lurine BRAK (CXCL14)                   | 250-45    | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| uman BTLA Fc                           | 310-43    | 10 µg: \$87  | 50 µg: \$211  | 1 mg: \$1,620 | CHO cells    |
| uman C1 Inhibitor                      | 130-20    | 50 µg: \$87  | 200 µg: \$211 | 1 mg: \$864   | CHO cells    |
| 1urine C10 (CCL6)                      | 250-06    | 2 µg: \$87   | 10 μg: \$211  | 1 mg: \$3,240 | E. coli      |
| uman C5a                               | 300-70    | 5 μg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| lurine C5a                             | 315-40    | 5 μg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| at Carboxypeptidase-B                  | 400-00    | 5 μg: \$87   | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| uman Cardiotrophin-1                   | 300-32    | 2 µg: \$87   | 10 μg: \$211  | 1 mg: \$5,616 | E. coli      |
|                                        |           |              | 10            | -             |              |
| lurine Cardiotrophin-1                 | 250-25    | 2 µg: \$87   | 10 µg: \$211  | 1 mg: \$5,616 |              |
| uman sCD4                              | 110-11    | 10 µg: \$87  | 50 µg: \$211  | 1 mg: \$1,944 | CHO cells    |
| uman sCD8a                             | 310-41    | 10 µg: \$87  | 50 µg: \$211  | 1 mg: \$1,620 | CHO cells    |
| uman sCD14                             | 110-01    | 10 µg: \$87  | 50 µg: \$211  | 1 mg: \$1,620 | HEK293 cells |
| uman sCD22                             | 100-01    | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$5,184 | CHO cells    |
| uman sCD23                             | 310-26    | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| uman sCD27 Ligand                      | 310-30    | 10 µg: \$87  | 50 µg: \$211  | 1 mg: \$1,620 | CHO cells    |
| uman sCD28 Fc                          | 310-34    | 20 µg: \$87  | 100 µg: \$211 | 1 mg: \$1,188 | CHO cells    |
| uman sCD30 Ligand                      | 450-42    | 10 µg: \$87  | 50 µg: \$211  | 1 mg: \$1,620 | CHO cells    |
| uman sCD34                             | 310-31    | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | CHO cells    |
| uman sCD40 Ligand                      | 310-02    | 10 µg: \$87  | 50 µg: \$211  | 1 mg: \$1,620 | E. coli      |
| lurine sCD40 Ligand                    | 315-15    | 5 µg: \$87   | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| uman sCD100                            | 310-29    | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$5,616 | CHO cells    |
| uman CDNF                              | 450-05    | 5 µg: \$87   | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| uman Chemerin                          | 300-66    | 5 µg: \$87   | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| uman CNTF                              | 450-13    | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| at CNTF                                | 450-50    | 5 µg: \$87   | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| uman CTACK (CCL27)                     | 300-54    | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| lurine CTACK (CCL27)                   | 250-26    | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| uman CTGF                              | 120-19    | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| uman CTGFL/WISP-2                      | 120-16    | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| uman CTLA-4 Fc                         | 310-05    | 50 µg: \$87  | 200 µg: \$211 | 1 mg: \$864   | CHO cells    |
| uman CXCL16                            | 300-55    | 5 µg: \$87   | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| urine CXCL16                           | 250-28    | 5 µg: \$87   | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| uman CYR61                             | 120-25    | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| uman DKK-1                             | 120-30    | 2 µg: \$87   | 10 μg: \$211  | 1 mg: \$5,616 | HEK293 cells |
| uman DKK-2                             | 120-45    | 2 µg: \$87   | 10 µg: \$211  | 1 mg: \$5,616 | CHO cells    |
| uman DKK-3                             | 120-46    | 2 µg: \$87   | 10 μg: \$211  | 1 mg: \$5,616 | CHO cells    |
| uman sDLL-1                            | 140-08    | 5 µg: \$87   | 25 µg: \$211  | 1 mg: \$3,240 | HEK293 cells |
| uman sDLL-4                            | 140-07    | 5 μg: \$87   | 25 μg: \$211  | 1 mg: \$3,240 | HEK293 cells |
| uman EGF                               | AF-100-15 | 100 µg: \$90 | 500 µg: \$195 | 1 mg: \$270   | E. coli      |
| urine EGF                              | 315-09    | 100 µg: \$90 | 500 µg: \$195 | 1 mg: \$270   | E. coli      |
|                                        |           |              |               | -             |              |
| at EGF                                 | 400-25    | 20 µg: \$87  | 100 µg: \$211 | 1 mg: \$1,188 | E. coli      |
| uman EGF Receptor (EGFR)               | 100-15R   | 2 µg: \$87   | 10 µg: \$211  | 1 mg: \$4,212 | CHO cells    |
| uman EGF-L7                            | 100-61    | 2 µg: \$87   | 10 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| uman EG-VEGF                           | 100-44    | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| lurine EG-VEGF                         | 315-29    | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| uman ENA-78 (CXCL5) (amino acids 5–78) | 300-22    | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| uman ENA-78 (CXCL5) (amino acids 8–78) | 300-22B   | 5 µg: \$87   | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |

| Description                       | Cat. No. | Size A      | Size B        | Price per mg  | Source       |
|-----------------------------------|----------|-------------|---------------|---------------|--------------|
| Human Endostatin                  | 150-01   | 20 µg: \$87 | 100 µg: \$211 | 1 mg: \$1,188 | E. coli      |
| Human Enterokinase                | 450-48C  | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 | CHO cells    |
| Human Eotaxin (CCL11)             | 300-21   | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Murine Eotaxin (CCL11)            | 250-01   | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human Eotaxin-2 (CCL24)           | 300-33   | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Aurine Eotaxin-2 (CCL24)          | 250-22   | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| luman Eotaxin-3 (CCL26)           | 300-48   | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human Epigen                      | 100-51   | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human Epiregulin                  | 100-04   | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human EPO                         | 100-64   | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 | CHO cells    |
| Human E-Selectin                  | 150-15   | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 | CHO cells    |
| Human Exodus-2 (CCL21)            | 300-35A  | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Aurine Exodus-2 (CCL21)           | 250-13   | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human sFas Ligand                 | 310-03H  | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$4,644 | CHO cells    |
| luman sFas Receptor               | 310-20   | 5 μg: \$87  | 20 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| luman Fetuin A/AHSG               | 140-13   | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 | HEK293 cells |
| luman FGF-Acidic                  | 100-17A  |             | 50 μg: \$211  |               | E. coli      |
|                                   |          | 10 µg: \$87 |               | 1 mg: \$1,620 |              |
| Aurine FGF-Acidic                 | 450-33A  | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 | E. coli      |
| Rat FGF-Acidic                    | 400-29A  | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 | E. coli      |
| Human FGF-Basic (154 amino acids) | 100-18B  | 10 µg: \$88 | 50 µg: \$215  | 1 mg: \$880   | E. coli      |
| luman FGF-Basic (146 amino acids) | 100-18C  | 10 µg: \$88 | 50 µg: \$215  | 1 mg: \$1,320 | E. coli      |
| Aurine FGF-Basic                  | 450-33   | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,512 | E. coli      |
| Rat FGF-Basic                     | 400-29   | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,512 | E. coli      |
| luman FGF-4                       | 100-31   | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| /lurine FGF-4                     | 450-57   | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| luman FGF-5                       | 100-34   | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 | E. coli      |
| luman FGF-6                       | 100-30   | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| luman FGF-8a                      | 100-25A  | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$4,212 | CHO cells    |
| luman/Murine FGF-8b               | 100-25   | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human FGF-9                       | 100-23   | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| /lurine FGF-9                     | 450-30   | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| Human FGF-10                      | 100-26   | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| /lurine FGF-10                    | 450-61   | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Rat FGF-10                        | 400-42   | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| luman FGF-16                      | 100-29   | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| luman FGF-17                      | 100-27   | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| luman FGF-18                      | 100-28   | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| luman FGF-19                      | 100-32   | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human FGF-20                      | 100-41   | 3 µg: \$87  | 15 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| Human FGF-21                      | 100-42   | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Aurine FGF-21                     | 450-56   | 5 µg: \$87  | 25 μg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human FGF-23                      | 100-52   | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| Aurine FGF-23                     | 450-55   | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| Human FGF-BP-1                    | 100-66   | 5 μg: \$87  | 25 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| luman FGFR1a (IIIc) Fc            | 160-02   |             |               |               | CHO cells    |
| ( )                               |          | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 |              |
| luman FGFR2a (IIIc) Fc            | 160-03   | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 | CHO cells    |
| Human FGFR3 (IIIc) Fc             | 160-05   | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 | CHO cells    |
| luman Flt3-Ligand                 | 300-19   | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| Aurine Flt3-Ligand                | 250-31L  | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| at Flt3-Ligand                    | 400-43   | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| luman Follistatin                 | 120-13   | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$5,616 | E. coli      |
| luman Fractalkine (CX3CL1)        | 300-31   | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Rat Fractalkine (CX3CL1)          | 400-26   | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| luman sFRP-1                      | 120-29   | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$4,212 | HeLa cells   |
| luman sFRP-4                      | 120-50   | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | CHO cells    |
| luman sFRP-5                      | 120-53   | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 | CHO cells    |
| Human FSTL1                       | 120-51   | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 | CHO cells    |
| Human Furin                       | 450-47   | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$5,184 | Insect cells |

| Description                         | Cat. No.         | Size A       | Size B                        | Price per mg  | Source       |
|-------------------------------------|------------------|--------------|-------------------------------|---------------|--------------|
| luman gAcrp30/Adipolean             | 450-21           | 5 µg: \$87   | 25 µg: \$211                  | 1 mg: \$3,240 | E. coli      |
| /urine gAcrp30                      | 450-27           | 5 µg: \$87   | 25 µg: \$211                  | 1 mg: \$3,240 | E. coli      |
| luman gAcrp30/Adipolean Variant     | 450-20           | 5 µg: \$87   | 25 µg: \$211                  | 1 mg: \$3,240 | E. coli      |
| uman Galectin-1                     | 450-39           | 10 µg: \$87  | 50 µg: \$211                  | 1 mg: \$1,620 | E. coli      |
| uman Galectin-3                     | 450-38           | 10 µg: \$87  | 50 µg: \$211                  | 1 mg: \$1,620 | E. coli      |
| uman GASP-1                         | 120-41           | 5 µg: \$87   | 25 µg: \$211                  | 1 mg: \$4,212 | CHO cells    |
| uman GCP-2 (CXCL6)                  | 300-41           | 5 µg: \$87   | 20 µg: \$211                  | 1 mg: \$3,240 | E. coli      |
| luman G-CSF                         | 300-23           | 2 µg: \$87   | 10 µg: \$211                  | 1 mg: \$4,212 | E. coli      |
| Iurine G-CSF                        | 250-05           | 2 µg: \$87   | 10 µg: \$211                  | 1 mg: \$4,212 | E. coli      |
| Rat G-CSF                           | 400-37           | 2 µg: \$87   | 10 µg: \$211                  | 1 mg: \$5,616 | E. coli      |
| luman GDF-2                         | 120-07           | 2 µg: \$87   | 10 µg: \$211                  | 1 mg: \$5,616 | CHO cells    |
| luman GDF-3                         | 120-22           | 5 µg: \$87   | 20 µg: \$211                  | 1 mg: \$4,212 | E. coli      |
| luman GDF-5 (BMP-14/CDMP-1)         | 120-01           | 10 µg: \$87  | 50 µg: \$211                  | 1 mg: \$1,620 | E. coli      |
| 1urine GDF-5 (BMP-14/CDMP-1)        | 315-24           | 10 µg: \$87  | 50 µg: \$211                  | 1 mg: \$1,620 | E. coli      |
| luman GDF-7                         | 120-37           | 2 µg: \$87   | 10 µg: \$211                  | 1 mg: \$5,616 | E. coli      |
| uman/Murine/Rat GDF-11              | 120-11           | 5 μg: \$87   | 20 µg: \$211                  | 1 mg: \$4,212 | E. coli      |
| luman GDF-15/MIC-1                  | 120-28C          |              |                               | 1 mg: \$5,616 | CHO cells    |
|                                     |                  | 5 µg: \$87   | 20 µg: \$211                  | 1 mg: \$5,616 | E. coli      |
|                                     | 450-10<br>450-44 | 2 µg: \$87   | 10 µg: \$211                  | 0 . ,         |              |
|                                     |                  | 2 µg: \$87   | 10 µg: \$211                  | 1 mg: \$5,616 | E. coli      |
|                                     | 450-51           | 2 µg: \$87   | 10 µg: \$211                  | 1 mg: \$5,616 | E. coli      |
| uman GITR/TNFRSF18 Fc               | 310-22R          | 20 µg: \$87  | 100 µg: \$211                 | 1 mg: \$1,188 | CHO cells    |
| luman GLP-1                         | 130-08           | 200 µg: \$87 | 1 mg: \$211                   | 5 mg: \$756   | E. coli      |
| taphylococcus Glu-C                 | 450-46           | 50 µg: \$87  | 250 µg: \$211                 | 1 mg: \$648   | E. coli      |
| luman GM-CSF                        | 300-03           | 5 µg: \$87   | 20 µg: \$211                  | 1 mg: \$3,510 | E. coli      |
| lurine GM-CSF                       | 315-03           | 5 µg: \$87   | 20 µg: \$211                  | 1 mg: \$3,510 | E. coli      |
| at GM-CSF                           | 400-23           | 5 µg: \$87   | 20 µg: \$211                  | 1 mg: \$3,510 | E. coli      |
| uman GMF-β                          | 450-37           | 2 µg: \$87   | 10 µg: \$211                  | 1 mg: \$5,616 | E. coli      |
| uman GPR15L                         | 300-71           | 5 µg: \$87   | 25 µg: \$211                  | 1 mg: \$3,240 | E. coli      |
| lurine GPR15L                       | 300-72           | 5 µg: \$87   | 25 µg: \$211                  | 1 mg: \$3,240 | E. coli      |
| lurine Granzyme B                   | 140-03           | 2 µg: \$87   | 10 µg: \$211                  | 1 mg: \$8,424 | Insect cells |
| uman Gremlin-1                      | 120-42           | 10 µg: \$87  | 50 µg: \$211                  | 1 mg: \$1,620 | CHO cells    |
| luman GRO-α/MGSA (CXCL1)            | 300-11           | 5 µg: \$87   | 25 µg: \$211                  | 1 mg: \$3,240 | E. coli      |
| at GRO/KC (CXCL1)                   | 400-10           | 5 µg: \$87   | 25 µg: \$211                  | 1 mg: \$3,240 | E. coli      |
| luman GRO-β (CXCL2)                 | 300-39           | 2 µg: \$87   | 10 µg: \$211                  | 1 mg: \$3,240 | E. coli      |
| at GRO-β/MIP-2 (CXCL2)              | 400-11           | 5 µg: \$87   | 25 µg: \$211                  | 1 mg: \$3,240 | E. coli      |
| uman GRO-γ (CXCL3)                  | 300-40           | 2 µg: \$87   | 10 µg: \$211                  | 1 mg: \$3,240 | E. coli      |
| uman Growth Hormone                 | 100-40           | 10 µg: \$87  | 50 µg: \$211                  | 1 mg: \$864   | E. coli      |
| uman HB-EGF                         | 100-47           | 10 µg: \$87  | 50 µg: \$211                  | 1 mg: \$1,620 | E. coli      |
| uman HCC-1 (CCL14) (72 amino acids) | 300-38           | 2 µg: \$87   | 10 µg: \$211                  | 1 mg: \$3,240 | E. coli      |
| uman HCC-1 (CCL14) (66 amino acids) | 300-38B          | 2 µg: \$87   | 10 µg: \$211                  | 1 mg: \$3,240 | E. coli      |
| uman Heregulin β-1                  | 100-03           | 10 µg: \$87  | 50 µg: \$211                  | 1 mg: \$1,620 | E. coli      |
| uman HGF                            | 100-39           | 2 µg: \$87   | 10 µg: \$211                  | 1 mg: \$5,184 | Insect cells |
| uman HGF                            | 100-39H          | 5 µg: \$87   | 25 µg: \$211                  | 1 mg: \$3,240 | HEK293 cells |
| lurine HGF                          | 315-23           | 5 μg: \$87   | 20 µg: \$211                  | 1 mg: \$4,212 | Insect cells |
| luman HPRG                          | 100-60           | 5 μg: \$87   | 25 μg: \$211                  | 1 mg: \$3,240 | CHO cells    |
| uman HVEM-Fc                        | 310-27           | 20 µg: \$87  | 25 μg: \$211<br>100 μg: \$211 | 1 mg: \$1,188 | Insect cells |
|                                     | 300-37           |              | 10 μg: \$211<br>10 μg: \$211  |               | E. coli      |
| uman I-309 (CCL1)                   | 150-05           | 2 µg: \$87   |                               | 1 mg: \$3,240 |              |
| uman ICAM-1                         |                  | 10 µg: \$87  | 50 µg: \$211                  | 1 mg: \$1,620 | CHO cells    |
| uman ICAM-2 Fc                      | 150-22           | 10 µg: \$87  | 50 µg: \$211                  | 1 mg: \$1,620 | CHO cells    |
| uman ICAM-3 Fc                      | 150-23           | 10 µg: \$87  | 50 µg: \$211                  | 1 mg: \$1,620 | CHO cells    |
| uman ICOS Fc                        | 310-39           | 10 µg: \$87  | 50 µg: \$211                  | 1 mg: \$1,620 | CHO cells    |
| uman IFN-β                          | 300-02BC         | 5 µg: \$87   | 20 µg: \$211                  | 1 mg: \$4,212 | CHO cells    |
| uman IFN-γ                          | 300-02           | 20 µg: \$87  | 100 µg: \$211                 | 1 mg: \$1,188 | E. coli      |
| 1urine IFN-γ                        | 315-05           | 20 µg: \$87  | 100 µg: \$211                 | 1 mg: \$1,188 | E. coli      |
| Rat IFN-γ                           | 400-20           | 20 µg: \$87  | 100 µg: \$211                 | 1 mg: \$1,188 | E. coli      |
| luman IFN-λ1                        | 300-02L          | 5 µg: \$87   | 20 µg: \$211                  | 1 mg: \$3,240 | E. coli      |
| luman IFN-λ2                        | 300-02K          | 5 µg: \$87   | 20 µg: \$211                  | 1 mg: \$3,240 | E. coli      |
|                                     |                  |              |                               |               |              |

| 300-02J<br>100-11 | 20 μg: \$87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100 µg: \$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 mg: \$1,188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0=0.15            | 100 µg: \$87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500 µg: \$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 mg: \$270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 250-19            | 10 µg: \$87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 µg: \$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 mg: \$1,512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100-11R3          | 200 µg: \$87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 mg: \$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 mg: \$195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100-12            | 10 µg: \$87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 µg: \$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 mg: \$1,512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 350-10            | 5 µg: \$87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25 µg: \$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 mg: \$3,240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Insect cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Insect cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E, coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Insect cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 400-02            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 µg: \$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 200-02RC          | 5 µg: \$87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25 µg: \$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 mg: \$3,024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CHO cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 200-03            | 2 µg: \$87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 µg: \$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 mg: \$3,240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 213-13            | 2 µg: \$87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 µg: \$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 mg: \$3,240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 400-03            | 5 µg: \$87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 µg: \$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 mg: \$3,240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 200-04            | 5 µg: \$87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 µg: \$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 mg: \$3,510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 214-14            | 5 µg: \$87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 µg: \$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 mg: \$3,510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 400-04            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 mg: \$3,510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 200-04R           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HEK293 cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHO cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E, coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHO cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 200-08            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25 µg: \$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 200-09            | 2 µg: \$87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 µg: \$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 mg: \$5,616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 219-19            | 2 µg: \$87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 µg: \$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 mg: \$5,616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 400-18            | 2 µg: \$87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 µg: \$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 mg: \$5,616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 200-10            | 2 µg: \$87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 µg: \$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 mg: \$5,616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 210-10            | 2 µg: \$87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 µg: \$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 mg: \$5,616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 400-19            | 2 µg: \$87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 µg: \$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 mg: \$5,616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 200-11            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 220-11            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E. coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HEK293 cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHO cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HEK293 cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHO cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Insect cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 210-12P80H        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | 2 µg: \$87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 µg: \$211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 mg: \$5,616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HEK293 cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 350-06B         100-08         350-05B         100-05         350-07B         350-09         200-01A         211-11A         400-01B         201-01RA         200-01RA         200-01RA         200-01RA         200-02         212-12         400-02         200-02RC         200-03         213-13         400-03         200-04R         200-04R         200-04R         200-04RC         200-04R         200-04R         200-04R         200-04R         200-05         215-15         400-05         200-06RC         200-07         217-17         400-07         200-08M         200-08M         200-08M         200-09         219-19         400-18         200-10         210-10         400-19         200-11 | $350-06B$ $5 \ \mu g: \$87$ $100-08$ $5 \ \mu g: \$87$ $350-05B$ $5 \ \mu g: \$87$ $350-07B$ $5 \ \mu g: \$87$ $350-07B$ $5 \ \mu g: \$87$ $200-01A$ $2 \ \mu g: \$87$ $200-01A$ $2 \ \mu g: \$87$ $200-01A$ $2 \ \mu g: \$87$ $200-01B$ $2 \ \mu g: \$87$ $200-01B$ $2 \ \mu g: \$87$ $200-01B$ $2 \ \mu g: \$87$ $200-01RA$ $20 \ \mu g: \$87$ $200-01RA$ $20 \ \mu g: \$87$ $200-02$ $10 \ \mu g: \$87$ $200-02$ $10 \ \mu g: \$87$ $200-02$ $5 \ \mu g: \$87$ $200-03$ $2 \ \mu g: \$87$ $200-04$ $5 \ \mu g: \$87$ $200-04$ $5 \ \mu g: \$87$ $200-04$ $5 \ \mu g: \$87$ $200-04$ R $3 \ \mu g: \$87$ $200-04$ R $3 \ \mu g: \$87$ $200-04$ R $5 \ \mu g: \$87$ $200-04$ R $2 \ \mu g: \$87$ $200-06$ $2 \ \mu g: \$87$ $200-07$ $2 \ \mu g: \$87$ $200-08$ $5 \ \mu g: \$87$ $200-09$ $2 \ \mu g: \$87$ $200-08$ $5 \ \mu g: \$87$ $200-10$ $2 \ \mu g: \$87$ <t< td=""><td><math>350-06B</math><math>5 \ \mu g; \\$87</math><math>20 \ \mu g; \\$211</math><math>100-08</math><math>5 \ \mu g; \\$87</math><math>25 \ \mu g; \\$211</math><math>350-05B</math><math>5 \ \mu g; \\$87</math><math>20 \ \mu g; \\$211</math><math>350-07B</math><math>5 \ \mu g; \\$87</math><math>20 \ \mu g; \\$211</math><math>350-07B</math><math>5 \ \mu g; \\$87</math><math>20 \ \mu g; \\$211</math><math>200-01A</math><math>2 \ \mu g; \\$87</math><math>10 \ \mu g; \\$211</math><math>200-01B</math><math>2 \ \mu g; \\$87</math><math>20 \ \mu g; \\$211</math><math>200-02</math><math>0 \ \mu g; \\$87</math><math>20 \ \mu g; \\$211</math><math>200-02</math><math>0 \ \mu g; \\$87</math><math>20 \ \mu g; \\$211</math><math>200-02</math><math>5 \ \mu g; \\$87</math><math>20 \ \mu g; \\$211</math><math>200-03</math><math>2 \ \mu g; \\$87</math><math>20 \ \mu g; \\$211</math><math>200-04</math><math>5 \ \mu g; \\$87</math><math>20 \ \mu g; \\$211</math><math>200-05</math><math>2 \ \mu g; \\$87</math><math>10 \ \mu g; \\$211</math><math>200-06</math><math>5 \ \mu g; \\$87</math><math>20 \ \mu g; \\$211</math><math>200-06</math></td><td>350-06B         5 <math>\mu</math>g; \$87         20 <math>\mu</math>g; \$211         1 mg; \$5,616           100-08         5 <math>\mu</math>g; \$87         25 <math>\mu</math>g; \$211         1 mg; \$5,616           350-05B         5 <math>\mu</math>g; \$87         20 <math>\mu</math>g; \$211         1 mg; \$5,616           350-07B         5 <math>\mu</math>g; \$87         20 <math>\mu</math>g; \$211         1 mg; \$5,616           350-07B         5 <math>\mu</math>g; \$87         20 <math>\mu</math>g; \$211         1 mg; \$5,616           350-07B         5 <math>\mu</math>g; \$87         10 <math>\mu</math>g; \$211         1 mg; \$4,212           200-01A         2 <math>\mu</math>g; \$87         10 <math>\mu</math>g; \$211         1 mg; \$4,212           400-01A         2 <math>\mu</math>g; \$87         10 <math>\mu</math>g; \$211         mg; \$4,212           400-01B         2 <math>\mu</math>g; \$87         10 <math>\mu</math>g; \$211         mg; \$5,616           200-01B         2 <math>\mu</math>g; \$87         10 <math>\mu</math>g; \$211         mg; \$5,616           200-02         10 <math>\mu</math>g; \$87         20 <math>\mu</math>g; \$211         mg; \$5,616           200-02         10 <math>\mu</math>g; \$87         20 <math>\mu</math>g; \$211         mg; \$3,024           200-02         5 <math>\mu</math>g; \$87         20 <math>\mu</math>g; \$211         mg; \$3,024           200-02         5 <math>\mu</math>g; \$87         20 <math>\mu</math>g; \$211         mg; \$3,240           200-03         2 <math>\mu</math>g; \$87         10 <math>\mu</math>g; \$211         mg; \$3,510           200-04R         5 <math>\mu</math>g;</td></t<> | $350-06B$ $5 \ \mu g; \$87$ $20 \ \mu g; \$211$ $100-08$ $5 \ \mu g; \$87$ $25 \ \mu g; \$211$ $350-05B$ $5 \ \mu g; \$87$ $20 \ \mu g; \$211$ $350-07B$ $5 \ \mu g; \$87$ $20 \ \mu g; \$211$ $350-07B$ $5 \ \mu g; \$87$ $20 \ \mu g; \$211$ $200-01A$ $2 \ \mu g; \$87$ $10 \ \mu g; \$211$ $200-01A$ $2 \ \mu g; \$87$ $10 \ \mu g; \$211$ $200-01A$ $2 \ \mu g; \$87$ $10 \ \mu g; \$211$ $200-01A$ $2 \ \mu g; \$87$ $10 \ \mu g; \$211$ $200-01B$ $2 \ \mu g; \$87$ $10 \ \mu g; \$211$ $200-01B$ $2 \ \mu g; \$87$ $10 \ \mu g; \$211$ $200-01B$ $2 \ \mu g; \$87$ $10 \ \mu g; \$211$ $200-01B$ $2 \ \mu g; \$87$ $10 \ \mu g; \$211$ $200-01B$ $2 \ \mu g; \$87$ $20 \ \mu g; \$211$ $200-02$ $0 \ \mu g; \$87$ $20 \ \mu g; \$211$ $200-02$ $0 \ \mu g; \$87$ $20 \ \mu g; \$211$ $200-02$ $5 \ \mu g; \$87$ $20 \ \mu g; \$211$ $200-02$ $5 \ \mu g; \$87$ $20 \ \mu g; \$211$ $200-02$ $5 \ \mu g; \$87$ $20 \ \mu g; \$211$ $200-02$ $5 \ \mu g; \$87$ $20 \ \mu g; \$211$ $200-03$ $2 \ \mu g; \$87$ $20 \ \mu g; \$211$ $200-04$ $5 \ \mu g; \$87$ $20 \ \mu g; \$211$ $200-04$ $5 \ \mu g; \$87$ $20 \ \mu g; \$211$ $200-04$ $5 \ \mu g; \$87$ $20 \ \mu g; \$211$ $200-04$ $5 \ \mu g; \$87$ $20 \ \mu g; \$211$ $200-05$ $2 \ \mu g; \$87$ $10 \ \mu g; \$211$ $200-06$ $5 \ \mu g; \$87$ $20 \ \mu g; \$211$ $200-06$ | 350-06B         5 $\mu$ g; \$87         20 $\mu$ g; \$211         1 mg; \$5,616           100-08         5 $\mu$ g; \$87         25 $\mu$ g; \$211         1 mg; \$5,616           350-05B         5 $\mu$ g; \$87         20 $\mu$ g; \$211         1 mg; \$5,616           350-07B         5 $\mu$ g; \$87         20 $\mu$ g; \$211         1 mg; \$5,616           350-07B         5 $\mu$ g; \$87         20 $\mu$ g; \$211         1 mg; \$5,616           350-07B         5 $\mu$ g; \$87         10 $\mu$ g; \$211         1 mg; \$4,212           200-01A         2 $\mu$ g; \$87         10 $\mu$ g; \$211         1 mg; \$4,212           400-01A         2 $\mu$ g; \$87         10 $\mu$ g; \$211         mg; \$4,212           400-01B         2 $\mu$ g; \$87         10 $\mu$ g; \$211         mg; \$5,616           200-01B         2 $\mu$ g; \$87         10 $\mu$ g; \$211         mg; \$5,616           200-02         10 $\mu$ g; \$87         20 $\mu$ g; \$211         mg; \$5,616           200-02         10 $\mu$ g; \$87         20 $\mu$ g; \$211         mg; \$3,024           200-02         5 $\mu$ g; \$87         20 $\mu$ g; \$211         mg; \$3,024           200-02         5 $\mu$ g; \$87         20 $\mu$ g; \$211         mg; \$3,240           200-03         2 $\mu$ g; \$87         10 $\mu$ g; \$211         mg; \$3,510           200-04R         5 $\mu$ g; |

| Description                                    | Cat. No.         | Size A                    | Size B                        | Price per mg                   | Source             |
|------------------------------------------------|------------------|---------------------------|-------------------------------|--------------------------------|--------------------|
| Murine IL-13                                   | 210-13           | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | E. coli            |
| Rat IL-13 (109 amino acids)                    | 400-16           | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | E. coli            |
| Rat IL-13 (113 amino acids)                    | 400-16L          | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | E. coli            |
| luman IL-13 Variant                            | 200-13A          | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | E. coli            |
| luman IL-15                                    | 200-15           | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$4,212                  | E. coli            |
| 1urine IL-15                                   | 210-15           | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$4,212                  | E. coli            |
| at IL-15                                       | 400-24           | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$4,212                  | E. coli            |
| luman IL-16 (121 amino acids)                  | 200-16A          | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | E. coli            |
| luman IL-16 (129 amino acids)                  | 200-16           | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | E. coli            |
| luman IL-17A                                   | 200-17           | 5 µg: \$87                | 25 µg: \$211                  | 1 mg: \$3,240                  | E. coli            |
| 1urine IL-17A                                  | 210-17           | 5 µg: \$87                | 25 µg: \$211                  | 1 mg: \$3,240                  | E. coli            |
| luman IL-17B                                   | 200-28           | 5 µg: \$87                | 25 µg: \$211                  | 1 mg: \$3,240                  | E. coli            |
| luman IL-17D                                   | 200-27           | 5 μg: \$87                | 25 µg: \$211                  | 1 mg: \$3,240                  | E. coli            |
| Aurine IL-17D                                  | 210-17D          | 5 µg: \$87                | 25 μg: \$211                  | 1 mg: \$3,240                  | E. coli            |
| luman IL-17E                                   | 200-24           | 5 µg: \$87                | 25 μg: \$211                  | 1 mg: \$3,240                  | E. coli            |
| 1urine IL-17E                                  | 210-17E          | 5 μg: \$87                | 25 μg: \$211                  | 1 mg: \$3,240                  | E. coli            |
| luman IL-17F                                   | 200-25           | 5 μg: \$87                | 25 μg: \$211                  | 1 mg: \$3,240                  | E. coli            |
| Iurine IL-17F                                  | 210-17F          | 5 μg: \$87                | 25 μg: \$211<br>25 μg: \$211  | 1 mg: \$3,240                  | E. coli            |
| uman IL-18BP Fc                                | 200-18BP         | 20 μg: \$87               | 25 μg. \$211<br>100 μg: \$211 | 1 mg: \$1,188                  | CHO cells          |
| luman IL-19                                    | 200-186          | 20 μg: \$87<br>2 μg: \$87 |                               | -                              | E. coli            |
| luman IL-20                                    | 200-19           |                           | 10 µg: \$211                  | 1 mg: \$5,616                  | E. coli            |
|                                                |                  | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  |                    |
| luman IL-21                                    | 200-21           | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | E. coli            |
| Aurine IL-21                                   | 210-21           | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | E. coli            |
| at IL-21                                       | 400-41           | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | E. coli            |
| uman IL-22                                     | 200-22           | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | E. coli            |
| Iurine IL-22                                   | 210-22           | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | E. coli            |
| luman IL-23                                    | 200-23           | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$10,584                 | Insect cells       |
| luman IL-24                                    | 200-35           | 5 µg: \$87                | 20 µg: \$211                  | 1 mg: \$4,212                  | CHO cells          |
| luman IL-27                                    | 200-38           | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | HEK293 cells       |
| luman IL-31                                    | 200-31           | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | E. coli            |
| 1urine IL-31                                   | 210-31           | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | E. coli            |
| luman IL-33                                    | 200-33           | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | E. coli            |
| 1urine IL-33                                   | 210-33           | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | E. coli            |
| luman IL-34                                    | 200-34           | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | HEK293 cells       |
| luman IL-35                                    | 200-37           | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | HEK293 cells       |
| luman IL-36α (IL-1F6)                          | 200-36A          | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | E. coli            |
| luman IL-36β (IL-1F8)                          | 200-36B          | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | E. coli            |
| luman IL-36γ (IL-1F9)                          | 200-36G          | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | E. coli            |
| luman IL-36RA                                  | 200-36RA         | 5 µg: \$87                | 25 µg: \$211                  | 1 mg: \$3,240                  | E. coli            |
| 1urine IL-36RA                                 | 210-36RA         | 5 µg: \$87                | 25 µg: \$211                  | 1 mg: \$3,240                  | E. coli            |
| luman IL-37 (IL-1F7)                           | 200-39           | 5 µg: \$87                | 25 µg: \$211                  | 1 mg: \$3,240                  | E. coli            |
| luman INSL5/INSL7 Hybrid                       | 130-05           | 5 µg: \$88                | 25 µg: \$215                  | 1 mg: \$3,300                  | E. coli            |
| uman IP-10 (CXCL10)                            | 300-12           | 5 µg: \$87                | 25 µg: \$211                  | 1 mg: \$3,240                  | E. coli            |
| 1urine IP-10 (CXCL10)                          | 250-16           | 5 µg: \$87                | 25 µg: \$211                  | 1 mg: \$3,240                  | E. coli            |
| at IP-10 (CXCL10)                              | 400-33           | 5 µg: \$87                | 25 µg: \$211                  | 1 mg: \$3,240                  | E. coli            |
| luman/Murine/Rat Irisin                        | 100-65           | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$5,616                  | CHO cells          |
| luman I-TAC (CXCL11)                           | 300-46           | 5 µg: \$87                | 20 µg: \$211                  | 1 mg: \$3,240                  | E. coli            |
| lurine I-TAC (CXCL11)                          | 250-29           | 5 µg: \$87                | 20 µg: \$211                  | 1 mg: \$3,240                  | E. coli            |
| lurine JE/MCP-1 (CCL2)                         | 250-10           | 2 µg: \$87                | 10 µg: \$211                  | 1 mg: \$3,240                  | E. coli            |
| lurine KC (CXCL1)                              | 250-11           | 5 µg: \$87                | 20 µg: \$211                  | 1 mg: \$3,240                  | E. coli            |
| east Kex-2                                     | 450-45           | 50 µg: \$87               | 250 µg: \$211                 | 1 mg: \$648                    | Insect cells       |
| uman KGF (FGF-7)                               | 100-19           | 2 µg: \$87                | 10 μg: \$211                  | 1 mg: \$5,616                  | E. coli            |
| 1urine KGF (FGF-7)                             | 450-60           | 2 µg: \$87                | 10 μg: \$211                  | 1 mg: \$5,616                  | E. coli            |
| luman KLF4-TAT                                 | 110-08           | 5 μg: \$87                | 25 μg: \$211                  | 1 mg: \$3,240                  | HEK293 cells       |
| luman Klotho                                   | 100-53           | 5 μg: \$87                | 20 µg: \$211                  | 1 mg: \$3,240                  | CHO cells          |
|                                                | 100-00           |                           |                               | -                              |                    |
|                                                | 300-58           | 5 u.a. \$27               | 20 mar \$211                  | 1 ma \$2 0/0                   |                    |
| -luman LAG-1 (CCL4L1)<br>-luman LD78β (CCL3L1) | 300-58<br>300-56 | 5 μg: \$87<br>5 μg: \$87  | 20 μg: \$211<br>20 μg: \$211  | 1 mg: \$3,240<br>1 mg: \$3,240 | E. coli<br>E. coli |

| Description                               | Cat. No. | Size A                   | Size B                       | Price per mg                   | Source       |
|-------------------------------------------|----------|--------------------------|------------------------------|--------------------------------|--------------|
| Human Leptin                              | 300-27   | 200 µg: \$87             | 1 mg: \$211                  | 5 mg: \$540                    | E. coli      |
| Murine Leptin                             | 450-31   | 200 µg: \$87             | 1 mg: \$211                  | 5 mg: \$540                    | E. coli      |
| Rat Leptin                                | 400-21   | 200 µg: \$87             | 1 mg: \$211                  | 5 mg: \$540                    | E. coli      |
| Human Leptin Receptor                     | 300-27R  | 20 µg: \$87              | 100 µg: \$211                | 1 mg: \$1,188                  | CHO cells    |
| Human LIF                                 | 300-05   | 5 µg: \$87               | 25 µg: \$211                 | 1 mg: \$3,024                  | E. coli      |
| Murine LIF                                | 250-02   | 5 µg: \$87               | 25 µg: \$211                 | 1 mg: \$3,024                  | E. coli      |
| Human LIGHT                               | 310-09B  | 3 µg: \$87               | 15 µg: \$211                 | 1 mg: \$4,320                  | Insect cells |
| Murine LIGHT                              | 315-12   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Human Lin28-TAT                           | 110-06   | 5 µg: \$87               | 25 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Murine LIX (CXCL6) (70 amino acids)       | 250-36   | 5 μg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Murine LIX (CXCL6) (92 amino acids)       | 250-17   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Human Lymphotactin (XCL1)                 | 300-20   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Human MANF                                | 450-06   | 5 µg: \$87               | 25 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Human Maspin                              | 130-12   | 5 μg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Human M-CSF                               | 300-25   | 2 µg: \$87               | 10 µg: \$211                 | 1 mg: \$4,644                  | E. coli      |
| Murine M-CSF                              | 315-02   | 2 μg: \$87               | 10 µg: \$211                 | 1 mg: \$4,644                  | E. coli      |
| Rat M-CSF                                 | 400-28   | 2 μg: \$87               | 10 µg: \$211                 | 1 mg: \$5,616                  | E. coli      |
| Human MCP-1 (CCL2)                        | 300-04   | 2 μg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Rat MCP-1 (CCL2)                          | 400-12   | 2 μg: \$87               | 10 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| . ,                                       | 300-12   |                          |                              | -                              | E. coli      |
| Human MCP-2 (CCL8)<br>Murine MCP-2 (CCL8) | 250-15   | 2 μg: \$87<br>5 μg: \$87 | 10 μg: \$211<br>20 μg: \$211 | 1 mg: \$3,240<br>1 mg: \$3,240 | E. coli      |
| Human MCP-3 (CCL7)                        | 300-17   |                          |                              | 1 mg: \$3,240                  | E. coli      |
|                                           |          | 2 µg: \$87               | 10 µg: \$211                 |                                |              |
| Murine MCP-3 (CCL7)                       | 250-08   | 2 µg: \$87               | 10 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Human MCP-4 (CCL13)                       | 300-24   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Murine MCP-5 (CCL12)                      | 250-04   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Human MD-2/LY96                           | 160-07   | 10 µg: \$87              | 50 µg: \$211                 | 1 mg: \$1,620                  | HEK293 cells |
| Human MDC (CCL22) (67 amino acids)        | 300-36   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Human MDC (CCL22) (69 amino acids)        | 300-36A  | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Murine MDC (CCL22)                        | 250-23   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Human MEC (CCL28)                         | 300-57   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Murine MEC (CCL28)                        | 250-30   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Human Mesothelin                          | 100-63   | 10 µg: \$87              | 50 µg: \$211                 | 1 mg: \$1,620                  | CHO cells    |
| Human MIA                                 | 130-01   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$4,212                  | E. coli      |
| Human MIA-2                               | 130-02   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Human Midkine                             | 450-16   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Murine Midkine                            | 315-25   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Human MIF                                 | 300-69   | 5 µg: \$87               | 25 µg: \$211                 | 1 mg: \$3,240                  | Insect cells |
| Human MIG (CXCL9)                         | 300-26   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Murine MIG (CXCL9)                        | 250-18   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Human MIP-1α (CCL3)                       | 300-08   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Murine MIP-1a (CCL3)                      | 250-09   | 2 µg: \$87               | 10 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Rat MIP-1a (CCL3)                         | 400-15   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Human MIP-1β (CCL4)                       | 300-09   | 2 µg: \$87               | 10 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Murine MIP-1β (CCL4)                      | 250-32   | 2 µg: \$87               | 10 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Rat MIP-1β (CCL4)                         | 400-09   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Murine MIP-1γ (CCL9/10)                   | 250-12   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Murine MIP-2 (CXCL2)                      | 250-15   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Viral MIP-2                               | 350-03   | 10 µg: \$87              | 50 µg: \$211                 | 1 mg: \$1,620                  | E. coli      |
| Human MIP-3 (CCL23)                       | 300-29   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Human MIP-3α (CCL20)                      | 300-29A  | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Murine MIP-3a (CCL20)                     | 250-27   | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Human MIP-3β (CCL19)                      | 300-29B  | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Murine MIP-3β (CCL19)                     | 250-27B  | 5 µg: \$87               | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Human MIP-4 (CCL18)                       | 300-34   | 2 µg: \$87               | 10 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Human MIP-5 (CCL15)                       | 300-43   | 5 µg: \$87               | 25 µg: \$211                 | 1 mg: \$3,240                  | E. coli      |
| Human MMP-1                               | 420-01   | 2 µg: \$87               | 10 µg: \$211                 | 1 mg: \$5,616                  | E. coli      |
|                                           |          |                          |                              |                                |              |
| Human MMP-2                               | 420-02   | 2 µg: \$87               | 10 µg: \$211                 | 1 mg: \$5,616                  | E. coli      |

| Description                                                  | Cat. No.         | Size A                     | Size B                       | Price per mg                   | Source             |
|--------------------------------------------------------------|------------------|----------------------------|------------------------------|--------------------------------|--------------------|
| luman MPF                                                    | 100-62           | 10 µg: \$87                | 50 µg: \$211                 | 1 mg: \$1,620                  | CHO cells          |
| luman/Murine/Rat Myostatin                                   | 120-00           | 2 µg: \$87                 | 10 µg: \$211                 | 1 mg: \$5,616                  | E. coli            |
| luman Myostatin-Propeptide                                   | 120-12           | 5 µg: \$87                 | 25 µg: \$211                 | 1 mg: \$5,616                  | E. coli            |
| luman Nanog                                                  | 120-21           | 5 µg: \$87                 | 20 µg: \$211                 | 1 mg: \$4,212                  | E. coli            |
| luman Nanog-TAT                                              | 120-21B          | 5 µg: \$87                 | 20 µg: \$211                 | 1 mg: \$4,212                  | E. coli            |
| luman NAP-2 (CXCL7)                                          | 300-14           | 2 µg: \$87                 | 10 µg: \$211                 | 1 mg: \$3,240                  | E. coli            |
| luman Nesfatin-1                                             | 300-67           | 20 µg: \$87                | 100 µg: \$211                | 1 mg: \$1,188                  | E. coli            |
| luman/Rat Neuritin                                           | 450-36D          | 5 µg: \$87                 | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli            |
| /urine Neuropoietin                                          | 250-25B          | 5 µg: \$87                 | 25 µg: \$211                 | 1 mg: \$4,212                  | E. coli            |
| luman Neuroserpin                                            | 130-14           | 5 µg: \$87                 | 25 µg: \$211                 | 1 mg: \$3,240                  | E. coli            |
| luman Neurturin                                              | 450-11           | 5 µg: \$87                 | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli            |
| luman β-NGF                                                  | 450-01           | 20 µg: \$88                | 100 µg: \$215                | 1 mg: \$1,210                  | E. coli            |
| /urine β-NGF                                                 | 450-34           | 5 µg: \$88                 | 20 µg: \$215                 | 1 mg: \$3,300                  | E. coli            |
| luman NNT-1/BCSF-3                                           | 450-18           | 2 µg: \$87                 | 10 µg: \$211                 | 1 mg: \$5,616                  | E. coli            |
| luman Noggin                                                 | 120-10C          | 5 µg: \$87                 | 20 µg: \$211                 | 1 mg: \$4,212                  | HEK293 cells       |
| Iurine Noggin                                                | 250-38           | 5 µg: \$87                 | 20 µg: \$211                 | 1 mg: \$4,212                  | E. coli            |
| luman NOV                                                    | 120-26           | 5 µg: \$87                 | 20 µg: \$211                 | 1 mg: \$4,212                  | E. coli            |
| luman NP-1                                                   | 300-42           | 5 µg: \$87                 | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli            |
| luman NT-3                                                   | 450-03           | 2 µg: \$87                 | 10 µg: \$211                 | 1 mg: \$5,616                  | E. coli            |
| luman NT-4                                                   | 450-04           | 2 µg: \$87                 | 10 µg: \$211                 | 1 mg: \$5,616                  | E. coli            |
| luman Oncostatin M (196 amino acids)                         | 300-10H          | 2 µg: \$87                 | 10 µg: \$211                 | 1 mg: \$5,616                  | HEK293 cells       |
| luman Oncostatin M (209 amino acids)                         | 300-10T          | 2 µg: \$87                 | 10 µg: \$211                 | 1 mg: \$5,616                  | E. coli            |
| luman Oncostatin M (227 amino acids)                         | 300-10           | 2 µg: \$87                 | 10 µg: \$211                 | 1 mg: \$5,616                  | E. coli            |
| at Oncostatin M                                              | 400-36           | 2 µg: \$87                 | 10 µg: \$211                 | 1 mg: \$5,616                  | E. coli            |
| luman OPG                                                    | 450-14           | 10 µg: \$87                | 50 µg: \$211                 | 1 mg: \$1,620                  | E. coli            |
| luman Osteopontin                                            | 120-35           | 10 µg: \$87                | 50 µg: \$211                 | 1 mg: \$1,620                  | HEK293 cells       |
| luman OTOR                                                   | 130-03           | 5 µg: \$87                 | 20 µg: \$211                 | 1 mg: \$4,212                  | E. coli            |
| luman sOX40 Ligand                                           | 310-28           | 2 µg: \$87                 | 10 µg: \$211                 | 1 mg: \$5,616                  | Insect cells       |
| luman p16-INK4a                                              | 110-02           | 5 µg: \$87                 | 20 µg: \$211                 | 1 mg: \$4,212                  | E. coli            |
| luman p16-INK4a-TAT                                          | 110-02T          | 5 µg: \$87                 | 25 µg: \$211                 | 1 mg: \$3,240                  | E. coli            |
| luman PAF-AH                                                 | 140-10           | 5 µg: \$87                 | 20 µg: \$211                 | 1 mg: \$3,240                  | HEK293 cells       |
| luman PAI-1                                                  | 140-04           | 2 µg: \$87                 | 10 µg: \$211                 | 1 mg: \$5,616                  | E. coli            |
| luman PAI-2                                                  | 140-06           | 2 µg: \$87                 | 10 µg: \$211                 | 1 mg: \$5,616                  | E. coli            |
| luman PD-1 Fc                                                | 310-40           | 10 µg: \$87                | 50 µg: \$211                 | 1 mg: \$1,620                  | CHO cells          |
| luman PDGF-AA                                                | 100-13A          | 2 µg: \$87                 | 10 µg: \$211                 | 1 mg: \$4,212                  | E. coli            |
| Iurine PDGF-AA                                               | 315-17           | 2 µg: \$87                 | 10 µg: \$211                 | 1 mg: \$4,212                  | E. coli            |
| luman PDGF-AB                                                | 100-00AB         | 2 μg: \$87                 | 10 µg: \$211                 | 1 mg: \$4,212                  | E. coli            |
| luman PDGF-BB                                                | 100-14B          | 2 µg: \$87                 | 10 µg: \$211                 | 1 mg: \$4,212                  | E. coli            |
| 1urine PDGF-BB                                               | 315-18           | 2 µg: \$87                 | 10 µg: \$211                 | 1 mg: \$4,212                  | E. coli            |
| luman PDGF-CC                                                | 100-00CC         | 5 μg: \$87                 | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli            |
| luman PD-L1 Fc                                               | 310-35           | 20 µg: \$87                | 100 µg: \$211                | 1 mg: \$1,188                  | CHO cells          |
| luman PD-L2 Fc                                               | 310-38           | 20 µg: \$87                | 100 µg: \$211                | 1 mg: \$1,188                  | CHO cells          |
| luman PECAM-1                                                | 150-06           | 10 µg: \$87                | 50 µg: \$211                 | 1 mg: \$1,620                  | HEK293 cells       |
| luman PEDF                                                   | 130-13           | 5 μg: \$87                 | 20 µg: \$211                 | 1 mg: \$4,212                  | E. coli            |
| luman Persephin                                              | 450-12           | 5 μg: \$87                 | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli            |
| Iurine Persephin                                             | 450-35           | 5 μg: \$87                 | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli            |
| luman PF-4 (CXCL4)                                           | 300-16           | 5 μg: \$87                 | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli            |
| Iurine PF-4 (CXCL4)                                          | 250-39           | 5 μg: \$87                 | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli            |
| luman Pleiotrophin                                           | 450-15           | 5 μg: \$87                 | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli            |
| luman PIGF-1                                                 | 100-06           | 5 μg: \$87                 | 25 µg: \$211                 | 1 mg: \$3,240                  | E. coli            |
| at PIGF-1                                                    | 400-39           | 5 µg: \$87                 | 25 µg: \$211                 | 1 mg: \$3,240                  | E. coli            |
| luman PIGF-2                                                 | 100-56A          | 5 μg: \$87                 | 25 µg: \$211                 | 1 mg: \$3,240                  | E. coli            |
| luman PIGF-3                                                 | 100-57           | 5 μg: \$87                 | 25 µg: \$211                 | 1 mg: \$3,240                  | E. coli            |
| luman Prokineticin-2                                         | 100-46           | 5 μg: \$87                 | 20 µg: \$211                 | 1 mg: \$3,240                  | E. coli            |
|                                                              | 315-38           | 5 μg: \$87                 | 20 µg: \$211<br>20 µg: \$211 | 1 mg: \$3,240                  | E. coli            |
| lurine Prokineticin-?                                        |                  | U UU, UU/                  |                              | ι πι <b>g.</b> ψυ,240          | L. UUII            |
| Iurine Prokineticin-2                                        |                  |                            |                              |                                | E coli             |
| Iurine Prokineticin-2<br>Iuman Prolactin<br>Iurine Prolactin | 100-07<br>315-16 | 10 μg: \$87<br>10 μg: \$87 | 50 μg: \$211<br>50 μg: \$211 | 1 mg: \$1,620<br>1 mg: \$1,620 | E. coli<br>E. coli |

| Description                     | Cat. No.   | Size A      | Size B                       | Price per mg  | Source            |
|---------------------------------|------------|-------------|------------------------------|---------------|-------------------|
| Human PTHrP                     | 100-09     | 10 µg: \$87 | 50 µg: \$211                 | 1 mg: \$1,620 | E. coli           |
| Human R-Spondin-1               | 120-38     | 5 µg: \$87  | 20 µg: \$211                 | 1 mg: \$3,240 | CHO cells         |
| Murine R-Spondin-1              | 315-32     | 5 µg: \$87  | 20 µg: \$211                 | 1 mg: \$3,240 | CHO cells         |
| Human R-Spondin-2               | 120-43     | 5 µg: \$87  | 20 µg: \$211                 | 1 mg: \$3,240 | CHO cells         |
| Human R-Spondin-3               | 120-44     | 5 µg: \$87  | 20 µg: \$211                 | 1 mg: \$3,240 | CHO cells         |
| Human sRANK Ligand              | 310-01     | 2 µg: \$87  | 10 µg: \$211                 | 1 mg: \$5,616 | E. coli           |
| Human sRANK Ligand              | 310-01C    | 2 µg: \$87  | 10 µg: \$211                 | 1 mg: \$5,616 | CHO cells         |
| Murine sRANK Ligand             | 315-11     | 2 µg: \$87  | 10 µg: \$211                 | 1 mg: \$5,616 | E. coli           |
| Murine sRANK Ligand             | 315-11C    | 2 µg: \$87  | 10 µg: \$211                 | 1 mg: \$5,616 | CHO cells         |
| Rat sRANK Ligand                | 400-30     | 2 µg: \$87  | 10 µg: \$211                 | 1 mg: \$5,616 | E. coli           |
| Human sRANK Receptor            | 310-08     | 20 µg: \$87 | 100 µg: \$211                | 1 mg: \$1,188 | E. coli           |
| Human RANTES (CCL5)             | 300-06     | 5 μg: \$87  | 20 µg: \$211                 | 1 mg: \$3,240 | E. coli           |
| Murine RANTES (CCL5)            | 250-07     | 5 µg: \$87  | 20 µg: \$211                 | 1 mg: \$3,240 | E. coli           |
| Rat RANTES (CCL5)               | 400-13     | 5 µg: \$87  | 20 μg: \$211                 | 1 mg: \$3,240 | E. coli           |
| Human Relaxin-2                 | 130-15     | 5 μg: \$88  | 25 μg: \$215                 | 1 mg: \$3,300 | E. coli           |
| Human Relaxin-3                 | 130-10     | 5 μg: \$88  | 25 μg: \$215<br>25 μg: \$215 | 1 mg: \$3,300 | E. coli           |
| Murine RELMa                    | 450-26     | 5 μg: \$87  | 25 μg: \$211                 | 1 mg: \$3,240 | E. coli           |
| Human RELMβ                     | 450-20     | 5 μg: \$87  | 25 μg: \$211<br>25 μg: \$211 | 1 mg: \$3,240 | E. coli           |
|                                 | 450-26B    | 5 μg: \$87  |                              | -             | E. coli           |
| Murine RELMβ                    | 450-26G    |             | 25 µg: \$211                 | 1 mg: \$3,240 | E. coli           |
| Murine RELMγ<br>Human Resistin  | 450-20G    | 5 µg: \$87  | 25 µg: \$211                 | 1 mg: \$3,240 |                   |
|                                 |            | 5 µg: \$87  | 25 µg: \$211                 | 1 mg: \$5,616 | E. coli           |
| Murine Resistin                 | 450-28     | 5 µg: \$87  | 25 µg: \$211                 | 1 mg: \$5,616 | E. coli           |
| Rat Resistin                    | 400-35     | 5 µg: \$87  | 25 µg: \$211                 | 1 mg: \$5,616 | E. coli           |
| Human ROR1                      | 160-04     | 20 µg: \$87 | 100 µg: \$211                | 1 mg: \$1,188 | CHO cells         |
| Human sCD42b/GP1Ba              | 310-48     | 10 µg: \$87 | 50 µg: \$211                 | 1 mg: \$1,620 | CHO cells         |
| Human SCF                       | 300-07     | 2 µg: \$87  | 10 µg: \$211                 | 1 mg: \$2,592 | E. coli           |
| Murine SCF                      | 250-03     | 2 µg: \$87  | 10 µg: \$211                 | 1 mg: \$2,592 | E. coli           |
| Rat SCF                         | 400-22     | 2 µg: \$87  | 10 µg: \$211                 | 1 mg: \$3,240 | E. coli           |
| Human SCGF-α                    | 100-22A    | 2 µg: \$87  | 10 µg: \$211                 | 1 mg: \$5,616 | E. coli           |
| Human SCGF-β                    | 100-22B    | 2 µg: \$87  | 10 µg: \$211                 | 1 mg: \$5,616 | E. coli           |
| Human Sclerostin                | 100-49     | 5 µg: \$87  | 20 µg: \$211                 | 1 mg: \$4,212 | CHO cells         |
| Human SDF-1α (CXCL12)           | 300-28A    | 2 µg: \$87  | 10 µg: \$211                 | 1 mg: \$3,240 | E. coli           |
| Murine SDF-1a (CXCL12)          | 250-20A    | 2 µg: \$87  | 10 µg: \$211                 | 1 mg: \$3,240 | E. coli           |
| Rat SDF-1a (CXCL12)             | 400-32A    | 2 µg: \$87  | 10 µg: \$211                 | 1 mg: \$3,240 | E. coli           |
| Human SDF-1β (CXCL12)           | 300-28B    | 2 µg: \$87  | 10 µg: \$211                 | 1 mg: \$3,240 | E. coli           |
| Murine SDF-1β (CXCL12)          | 250-20B    | 2 µg: \$87  | 10 µg: \$211                 | 1 mg: \$3,240 | E. coli           |
| Rat SDF-1β (CXCL12)             | 400-32B    | 2 µg: \$87  | 10 µg: \$211                 | 1 mg: \$3,240 | E. coli           |
| Human SDF-1γ (CXCL12)           | 300-28G    | 2 µg: \$87  | 10 µg: \$211                 | 1 mg: \$3,240 | E. coli           |
| Human Semaphorin 3A Fc          | 150-17H    | 5 µg: \$87  | 25 µg: \$211                 | 1 mg: \$3,240 | CHO cells         |
| Murine SF-20                    | 210-25     | 2 µg: \$87  | 10 µg: \$211                 | 1 mg: \$5,616 | E. coli           |
| Human sIL-12 Receptor beta-1 Fc | 200-12RB-1 | 20 µg: \$87 | 100 µg: \$211                | 1 mg: \$1,188 | CHO cells         |
| Human sIL-15 Receptor alpha Fc  | 200-15RA   | 20 µg: \$87 | 100 µg: \$211                | 1 mg: \$1,188 | Hi-5 insect cells |
| Human Slit2-N                   | 150-11     | 5 µg: \$87  | 25 µg: \$211                 | 1 mg: \$4,212 | HEK293 cells      |
| Human SOD                       | 150-10     | 2 µg: \$87  | 10 µg: \$211                 | 1 mg: \$4,212 | E. coli           |
| Human Sonic Hedgehog (Shh)      | 100-45     | 5 µg: \$87  | 25 µg: \$211                 | 1 mg: \$3,024 | E. coli           |
| Murine Sonic Hedgehog (Shh)     | 315-22     | 5 µg: \$87  | 25 µg: \$211                 | 1 mg: \$3,024 | E. coli           |
| Human Sox2                      | 110-03     | 5 µg: \$87  | 25 µg: \$211                 | 1 mg: \$3,240 | E. coli           |
| Human Sox2-TAT                  | 110-03T    | 5 µg: \$87  | 25 µg: \$211                 | 1 mg: \$3,240 | E. coli           |
| Human SPARC/Osteonectin         | 120-36     | 10 µg: \$87 | 50 µg: \$211                 | 1 mg: \$1,620 | CHO cells         |
| Human TACI                      | 310-17     | 5 μg: \$87  | 20 μg: \$211                 | 1 mg: \$5,616 | E. coli           |
| Human TAFA-2                    | 300-63     | 5 µg: \$87  | 20 μg: \$211                 | 1 mg: \$3,240 | E. coli           |
| Human TARC (CCL17)              | 300-30     | 5 µg: \$87  | 20 μg: \$211                 | 1 mg: \$3,240 | E. coli           |
| Murine TARC (CCL17)             | 250-43     | 5 μg: \$87  | 20 µg: \$211                 | 1 mg: \$3,240 | E. coli           |
| Human TECK (CCL25)              | 300-45     | 5 µg: \$87  | 20 μg: \$211<br>20 μg: \$211 | 1 mg: \$3,240 | E. coli           |
| Human TFF-1                     | 300-60     | 5 μg: \$87  | 20 μg: \$211<br>20 μg: \$211 | 1 mg: \$3,240 | E. coli           |
|                                 |            |             |                              | -             |                   |
| Murine TFF-1                    | 315-31     | 5 µg: \$87  | 20 µg: \$211                 | 1 mg: \$3,240 | E. coli           |
| Human TFF-2                     | 300-59     | 5 µg: \$87  | 20 µg: \$211                 | 1 mg: \$3,240 | E. coli           |
| Murine TFF-2                    | 315-30     | 5 µg: \$87  | 20 µg: \$211                 | 1 mg: \$3,240 | E. coli           |
|                                 |            |             |                              |               |                   |

| Description                  | Cat. No. | Size A      | Size B        | Price per mg  | Source       |
|------------------------------|----------|-------------|---------------|---------------|--------------|
| Human TFF-3                  | 300-61   | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human TGF-α                  | 100-16A  | 20 µg: \$87 | 100 µg: \$211 | 1 mg: \$1,188 | E. coli      |
| luman TGF-β1                 | 100-21   | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$5,616 | HEK293 cells |
| Human TGF-β1                 | 100-21C  | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$5,616 | CHO cells    |
| luman TGF- $β_2$             | 100-35   | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$5,616 | Insect cells |
| luman TGF- $β_2$             | 100-35B  | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$5,616 | HEK293 cells |
| Human TGF-β <sub>3</sub>     | 100-36E  | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$5,616 | E. coli      |
| Human Thrombomodulin         | 100-58   | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$4,212 | HEK293 cells |
| Human/Murine/Rat Thymosin-β4 | 140-14   | 20 µg: \$87 | 100 µg: \$211 | 1 mg: \$1,188 | E. coli      |
| Human TIGAR                  | 150-14   | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| luman TIGAR-TAT              | 150-14T  | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| luman TIMP-1                 | 410-01   | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$5,616 | E. coli      |
| Human TIMP-2                 | 410-02   | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$5,616 | E. coli      |
| luman Tissue Factor          | 150-19T  | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$5,616 | CHO cells    |
| luman TL-1A                  | 310-23   | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| luman TLR-3                  | 160-01   | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | HEK293 cells |
| luman TLR-4                  | 160-06   | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 | HEK293 cells |
| Human TMIGD2/CD28H Fc        | 310-42   | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 | CHO cells    |
| Human TNF-α                  | 300-01A  | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 | E. coli      |
| Aurine TNF-α                 | 315-01A  | 5 μg: \$87  | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Rat TNF-α                    | 400-14   | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| luman TNF-β                  | 300-01B  | 5 μg: \$87  | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human sTNF Receptor Type I   | 310-07   | 5 μg: \$87  | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human sTNF Receptor Type II  | 310-12   | 5 μg: \$87  | 20 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human TPO                    | 300-18   | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$4,644 | E. coli      |
| Aurine TPO                   | 315-14   | 2 μg: \$87  | 10 µg: \$211  | 1 mg: \$4,644 | E. coli      |
| Rat TPO                      | 400-34   | 2 μg: \$87  | 10 µg: \$211  | 1 mg: \$4,644 | E. coli      |
| Human sTRAIL/Apo2L           | 310-04   | 10 µg: \$87 | 50 μg: \$211  | 1 mg: \$1,620 | E. coli      |
| Jurine TRAIL                 | 315-19   | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 | E. coli      |
| Human sTRAIL Receptor-1      | 310-18   | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 | E. coli      |
| Human sTRAIL Receptor-2      | 310-19   | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 | E. coli      |
| Human TREM-1 Fc              | 310-36   | 10 μg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 | CHO cells    |
| Human TSG                    | 120-09   |             |               | 1 mg: \$1,620 | E. coli      |
|                              |          | 10 µg: \$87 | 50 µg: \$211  |               |              |
| Human TSLP                   | 300-62   | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$5,616 | E. coli      |
| Human TWEAK                  | 310-06   | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Iuman TWEAK Receptor         | 310-21   | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human Uteroglobin            | 150-18   | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 | E. coli      |
| Human VAP-1                  | 150-16   | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$5,616 | CHO cells    |
| Human Vaspin                 | 130-11   | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| Human VCAM-1                 | 150-04   | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 | HEK293 cells |
| Aurine VCAM-1                | 315-37   | 10 µg: \$87 | 50 µg: \$211  | 1 mg: \$1,620 | CHO cells    |
| Human VEGF <sub>121</sub>    | 100-20A  | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| Human VEGF <sub>165</sub>    | 100-20   | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| Murine VEGF <sub>165</sub>   | 450-32   | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| Rat VEGF <sub>165</sub>      | 400-31   | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| Human VEGF-B                 | 100-20B  | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| luman VEGF-C                 | 100-20CD | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$3,240 | HEK293 cells |
| Human VEGF-D                 | 100-20D  | 2 µg: \$87  | 10 µg: \$211  | 1 mg: \$5,616 | HEK293 cells |
| luman Vimentin               | 110-10   | 20 µg: \$87 | 100 µg: \$211 | 1 mg: \$1,188 | E. coli      |
| luman Visfatin               | 130-09   | 5 µg: \$87  | 25 µg: \$211  | 1 mg: \$3,240 | E. coli      |
| luman WISP-1                 | 120-18   | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| Human WISP-3                 | 120-20   | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$4,212 | E. coli      |
| Human Wnt-1                  | 120-17   | 2 µg: \$87  | 10 µg: \$195  | 1 mg: \$5,616 | E. coli      |
| Aurine Wnt-3a                | 315-20   | 2 µg: \$88  | 10 µg: \$215  | NA            | Cell culture |
| Human Wnt-7a                 | 120-31   | 3 µg: \$87  | 15 µg: \$211  | 1 mg: \$5,184 | HEK293 cells |
| Human Wnt-9b                 | 120-49   | 5 µg: \$87  | 20 µg: \$211  | 1 mg: \$5,616 | CHO cells    |

# Antigen affinity-purified polyclonal and biotinylated polyclonal antibodies

Invitrogen<sup>™</sup> PeproTech<sup>™</sup> polyclonal antibodies are purified through the isolation of specific polyclonal antibodies from antiserum by antigen affinity chromatography. This procedure exploits the specificity of the antibody–antigen interaction and typically yields >95% pure specific antibodies. Normally, the sera from host animals, after immunization with cytokines, contain only small amounts (<5%) of cytokine-specific antibody that cannot be effectively isolated by standard purification procedures (e.g., ion exchange chromatography) or by non–antigen-specific affinity procedures, such as protein A or G affinity purification. The large quantities of unrelated IgGs found in inferior preparations can considerably increase the background when the antibody is used in analytical procedures such as ELISA, neutralization, immunohistochemistry, and western blotting. Therefore, the use of superior antigen affinity–purified antibody preparations can help alleviate background in these analytical procedures.

Invitrogen<sup>™</sup> PeproTech<sup>™</sup> biotinylated antibodies are produced from highly pure and specific antigen affinity–purified polyclonal antibodies, and are therefore ideal for use in any analytical procedures that require biotinylated antibodies.

#### PeproTech polyclonal and biotinylated polyclonal antibodies\*

| Description                       | Cat. No.    | Size A       | Size B        | Price per mg  | Source |
|-----------------------------------|-------------|--------------|---------------|---------------|--------|
| Anti-Human Adiponectin            | 500-P239    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hAdiponectin    | 500-P239BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human AITRL                  | 500-P244    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hAITRL          | 500-P244BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human Amphiregulin           | 500-P322    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hAmphiregulin   | 500-P322BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human ApoA-1                 | 500-P331    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hApoA-1         | 500-P331BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human ApoE3                  | 500-P238    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hApoE3          | 500-P238BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human APRIL                  | 500-P192    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hAPRIL          | 500-P192BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human Artemin                | 500-P245    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hArtemin        | 500-P245BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human 4-1BB Ligand           | 500-P169    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-h4-1BB Ligand   | 500-P169BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human 4-1BB Receptor         | 500-P167G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-h4-1BB Receptor | 500-P167GBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human BAFF                   | 500-P163    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hBAFF           | 500-P163BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human BAFF                   | 500-P163G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hBAFF           | 500-P163GBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human BCA-1 (CXCL13)         | 500-P141    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hBCA-1 (CXCL13) | 500-P141BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human BD-1                   | 500-P253    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hBD-1           | 500-P253BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human BD-2                   | 500-P161G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hBD-2           | 500-P161GBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human BD-3                   | 500-P241    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hBD-3           | 500-P241BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human BD-4                   | 500-P268    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hBD-4           | 500-P268BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human BD-5                   | 500-P323    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hBD-5           | 500-P323BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
|                                   |             |              |               |               |        |

\* In the names of biotinylated antibodies, h = human, m = murine, r = rat, h/m/r = human/murine/rat.

| Description                           | Cat. No.               | Size A       | Size B        | Price per mg  | Source |
|---------------------------------------|------------------------|--------------|---------------|---------------|--------|
| Anti-Human/Murine/Rat BDNF            | 500-P84                | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-h/m/rBDNF           | 500-P84BT              | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Inti-Human Betacellulin               | 500-P254               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hBetacellulin       | 500-P254BT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human/Murine/Rat BMP-2            | 500-P195               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-h/m/rBMP-2          | 500-P195BT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human BMP-7                       | 500-P198               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hBMP-7              | 500-P198BT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human BRAK (CXCL14)               | 500-P237               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| liotinylated Anti-hBRAK (CXCL14)      | 500-P237BT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Murine C10 (CCL6)                 | 500-P112               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| liotinylated Anti-mC10 (CCL6)         | 500-P112BT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human Cardiotrophin-1             | 500-P101               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hCardiotrophin-1    | 500-P101BT             | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human sCD14                       | 500-P320               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hsCD14               | 500-P320BT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human sCD22                       | 500-P227               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hsCD22               | 500 P227BT             | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human sCD34                       | 500-P327               | 50 µg: \$211 | 100 μg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hsCD34               | 500-P327BT             | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human sCD40 Ligand                | 500-P142G              | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| iotinylated Anti-hsCD40 Ligand        | 500 P142GBT            | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Goat   |
| nti-Human CNTF                        | 500-P142GB1            | 50 µg: \$211 | 100 µg: \$270 | -             | Rabbit |
| iotinylated Anti-hCNTF                | 500-P140<br>500-P140BT |              | 50 μg: \$270  | 1 mg: \$1,836 | Rabbit |
|                                       |                        | 25 µg: \$211 |               | 1 mg: \$3,672 |        |
| nti-Rat CNTF                          | 500-P79                | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-rCNTF                | 500-P79BT              | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human CRP                         | 500-P242               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hCRP                 | 500-P242BT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human CTACK (CCL27)               | 500-P294               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hCTACK (CCL27)       | 500-P294BT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human CTGF                        | 500-P252               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hCTGF                | 500-P252BT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human CTGFL/WISP-2                | 500-P212               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hCTGFL/WISP-2        | 500-P212BT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human CXCL16                      | 500-P200               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hCXCL16              | 500-P200BT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Murine CXCL16                     | 500-P201G              | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| iotinylated Anti-mCXCL16              | 500-P201GBT            | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| nti-Human sDLL-4                      | 500-P279               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hsDLL-4              | 500-P279BT             | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human EGF                         | 500-P45                | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hEGF                 | 500-P45BT              | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Murine EGF                        | 500-P174G              | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| iotinylated Anti-mEGF                 | 500-P174GBT            | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| nti-Rat EGF                           | 500-P277               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-rEGF                 | 500-P277BT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human EGF Receptor (EGFR)         | 500-P306               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hEGF Receptor (EGFR) | 500-P306BT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human EG-VEGF                     | 500-P188G              | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| iotinylated Anti-hEG-VEGF             | 500-P188GBT            | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| nti-Human EMAP-II                     | 500-P172G              | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| iotinylated Anti-hEMAP-II             | 500-P172GBT            | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| nti-Human ENA-78 (CXCL5)              | 500-P91                | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hENA-78 (CXCL5)      | 500-P91BT              | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human Endostatin                  | 500-P262               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hEndostatin          | 500-P262BT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human Eotaxin (CCL11)             | 500-P41                | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hEotaxin (CCL11)    | 500-P41BT              | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |

| Description                                  | Cat. No.    | Size A       | Size B        | Price per mg  | Source |
|----------------------------------------------|-------------|--------------|---------------|---------------|--------|
| Anti-Human Eotaxin (CCL11)                   | 500-P41G    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hEotaxin (CCL11)           | 500-P41GBT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Murine Eotaxin (CCL11)                  | 500-P67     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mEotaxin (CCL11)           | 500-P67BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human Eotaxin-2 (CCL24)                 | 500-P103G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hEotaxin-2 (CCL24)         | 500-P103GBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Murine Eotaxin-2 (CCL24)                | 500-P175G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-mEotaxin-2 (CCL24)         | 500-P175GBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human Eotaxin-3 (CCL26)                 | 500-P156G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hEotaxin-3 (CCL26)         | 500-P156GBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human EPO                               | 500-P318    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hEPO                       | 500-P318BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human Exodus-2 (CCL21)                  | 500-P109    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hExodus-2 (CCL21)          | 500-P109BT  | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Murine Exodus-2 (CCL21)                 | 500-P114    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mExodus-2 (CCL21)          | 500-P114BT  | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human sFas Ligand                       | 500-P184G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hsFas Ligand               | 500-P184GBT | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human sFas Receptor                     | 500-P295    | 50 μg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hsFas Receptor             | 500-P295BT  | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human FGF-Acidic                        | 500-P17     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hFGF-Acidic                | 500-P17BT   | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human FGF-Basic                         | 500-P18     | 50 µg: \$211 |               | -             | Rabbit |
|                                              | 500-P18BT   |              | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hFGF-Basic                 |             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 |        |
| Anti-Human FGF-4                             | 500-P158    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hFGF-4                     | 500-P158BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Murine FGF-9                            | 500-P66     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mFGF-9                     | 500-P66BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human FGF-10                            | 500-P151G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hFGF-10                    | 500-P151GBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human FGF-16                            | 500-P160G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hFGF-16                    | 500-P160GBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human FGF-17                            | 500-P152    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hFGF-17                    | 500-P152BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human FGF-23                            | 500-P319    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hFGF-23                    | 500-P319BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3400  | Rabbit |
| Anti-Human FGF-17                            | 500-P152G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hFGF-17                    | 500-P152GBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human Flt3-Ligand                       | 500-P42     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hFlt3-Ligand               | 500-P42BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human Follistatin                       | 500-P207    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hFollistatin               | 500-P207BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human Fractalkine (CX3CL1)              | 500-P98     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hFractalkine (CX3CL1)      | 500-P98BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human gAcrp30/Adipolean                 | 500-P193G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hgAcrp30/Adipolean         | 500-P193GBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human gAcrp30/Adipolean Variant         | 500-P205    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hgAcrp30/Adipolean Variant | 500-P205BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human Galectin-1                        | 500-P210    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hGalectin-1                | 500-P210BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human Galectin-3                         | 500-P246    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hGalectin-3                | 500-P246BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human GCP-2 (CXCL6)                     | 500-P120    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hGCP-2 (CXCL6)             | 500-P120BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human G-CSF                             | 500-P43     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hG-CSF                     | 500-P43BT   | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Murine G-CSF                            | 500-P69     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mG-CSF                     | 500-P69BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |

| Description                            | Cat. No.    | Size A       | Size B        | Price per mg  | Source |
|----------------------------------------|-------------|--------------|---------------|---------------|--------|
| Anti-Human GDF-3                       | 500-P235    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hGDF-3               | 500-P235BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human GDNF                        | 500-P81     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hGDNF                | 500-P81BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human GM-CSF                      | 500-P33     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hGM-CSF              | 500-P33BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Murine GM-CSF                     | 500-P65     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mGM-CSF              | 500-P65BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Rat GM-CSF                        | 500-P225    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-rGM-CSF              | 500-P225BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human GRO-α/MGSA (CXCL1)          | 500-P92     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hGRO-α/MGSA (CXCL1)  | 500-P92BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Rat GRO/KC (CXCL1)                | 500-P74     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-rGRO/KC (CXCL1)      | 500-P74BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human GRO-β (CXCL2)               | 500-P104    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hGRO-β (CXCL2)       | 500-P104BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Rat GRO-β/MIP-2 (CXCL2)           | 500-P75     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-rGRO-β/MIP-2 (CXCL2) | 500-P75BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human GRO-γ (CXCL3)               | 500-P105    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hGRO-γ (CXCL3)       | 500-P105BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human HB-EGF                      | 500-P329    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hHB-EGF              | 500-P329BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human HCC-1 (CCL14)               | 500-P106    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hHCC-1 (CCL14)       | 500-P106BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human Heregulin β-1               | 500-P288    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hHeregulin β-1       | 500-P288BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human I-309 (CCL1)                | 500-P110    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hl-309 (CCL1)        | 500-P110BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human ICAM-1                      | 500-P287    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hICAM-1              | 500-P287BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human IFN-β                       | 500-P32B    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIFN-β               | 500-P32BBT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human IFN-γ                       | 500-P32     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIFN-γ               | 500-P32BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Murine IFN-γ                      | 500-P119    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mIFN-γ               | 500-P119BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Rat IFN-γ                         | 500-P122    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-rIFN-γ               | 500-P122BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Rat IFN-γ                         | 500-P122G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-rIFN-γ               | 500-P122GBT | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human IFN-λ2                      | 500-P247    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIFN-λ2              | 500-P247BT  | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human IGF-I                       | 500-P11     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIGF-I               | 500-P11BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Murine IGF-I                      | 500-P157G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-mIGF-I               | 500-P157GBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human IGF-II                      | 500-P12     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIGF-II              | 500-P12BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human IGF-BP1                     | 500-P228    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIGF-BP1             | 500-P228BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human IGF-BP3                     | 500-P230    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIGF-BP3             | 500-P230BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human IGF-BP5                     | 500-P232    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIGF-BP5             | 500-P232BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human IGF-BP7                     | 500-P234    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIGF-BP7             | 500-P234BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human IL-1a                       | 500-P21A    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIL-1a               | 500-P21ABT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |

| Description                                            | Cat. No.               | Size A                       | Size B                        | Price per mg                   | Source           |
|--------------------------------------------------------|------------------------|------------------------------|-------------------------------|--------------------------------|------------------|
| Anti-Murine IL-1a                                      | 500-P51A               | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Rabbit           |
| Biotinylated Anti-mIL-1a                               | 500-P51ABT             | 25 µg: \$211                 | 50 µg: \$270                  | 1 mg: \$3,672                  | Rabbit           |
| Anti-Rat IL-1a                                         | 500-P180G              | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Goat             |
| Biotinylated Anti-rlL-1α                               | 500-P180GBT            | 25 µg: \$211                 | 50 µg: \$270                  | 1 mg: \$3,672                  | Goat             |
| Anti-Human IL-1β                                       | 500-P21BG              | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Goat             |
| Biotinylated Anti-hIL-1β                               | 500-P21BGBT            | 25 µg: \$211                 | 50 µg: \$270                  | 1 mg: \$3,672                  | Goat             |
| Anti-Murine IL-1β                                      | 500-P51                | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Rabbit           |
| Biotinylated Anti-mIL-1ß                               | 500-P51BT              | 25 µg: \$211                 | 50 μg: \$270                  | 1 mg: \$3,672                  | Rabbit           |
| Anti-Rat IL-1β                                         | 500-P80                | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Rabbit           |
| Biotinylated Anti-rIL-1ß                               | 500-P80BT              | 25 µg: \$211                 | 50 μg: \$270                  | 1 mg: \$3,672                  | Rabbit           |
| Anti-Human IL-1RA                                      | 500-P209               | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Rabbit           |
| Biotinylated Anti-hIL-1RA                              | 500-P209BT             | 25 µg: \$211                 | 50 μg: \$270                  | 1 mg: \$3,672                  | Rabbit           |
| Anti-Human IL-2                                        | 500-P22                | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Rabbit           |
| Biotinylated Anti-hIL-2                                | 500-P22BT              | 25 µg: \$211                 | 50 µg: \$270                  | 1 mg: \$3,672                  | Rabbit           |
| Anti-Human IL-2                                        | 500-P22G               | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Goat             |
| Biotinylated Anti-hIL-2                                | 500-P22GBT             | 25 µg: \$211                 | 50 μg: \$270                  | 1 mg: \$3,672                  | Goat             |
| Anti-Murine IL-2                                       | 500-P111               | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Rabbit           |
| Biotinylated Anti-mIL-2                                | 500-P111BT             |                              |                               | -                              |                  |
| Anti-Rat IL-2                                          | 500-P111B1<br>500-P274 | 25 μg: \$211<br>50 μg: \$211 | 50 μg: \$270<br>100 μg: \$270 | 1 mg: \$3,672<br>1 mg: \$1,836 | Rabbit<br>Rabbit |
|                                                        |                        |                              |                               |                                |                  |
| Biotinylated Anti-rIL-2<br>Anti-Human sIL-2 Receptor α | 500-P274BT<br>500-P22R | 25 μg: \$211<br>50 μg: \$211 | 50 μg: \$270<br>100 μg: \$270 | 1 mg: \$3,672                  | Rabbit<br>Rabbit |
| •                                                      |                        |                              |                               | 1 mg: \$1,836                  |                  |
| Biotinylated Anti-hslL-2 Receptor α                    | 500-P22RBT             | 25 µg: \$211                 | 50 µg: \$270                  | 1 mg: \$3,672                  | Rabbit           |
| Anti-Human IL-3                                        | 500-P23                | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Rabbit           |
| Biotinylated Anti-hIL-3                                | 500-P23BT              | 25 µg: \$211                 | 50 µg: \$270                  | 1 mg: \$3,672                  | Rabbit           |
| Anti-Murine IL-3                                       | 500-P53                | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Rabbit           |
| Biotinylated Anti-mIL-3                                | 500-P53BT              | 25 µg: \$211                 | 50 μg: \$270                  | 1 mg: \$3,672                  | Rabbit           |
| Anti-Rat IL-3β                                         | 500-P177G              | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Goat             |
| Biotinylated Anti-rIL-3β                               | 500 P177GBT            | 25 µg: \$211                 | 50 µg: \$270                  | 1 mg: \$3,672                  | Goat             |
| Anti-Human IL-4                                        | 500-P24                | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Rabbit           |
| Biotinylated Anti-hIL-4                                | 500-P24BT              | 25 µg: \$211                 | 50 µg: \$270                  | 1 mg: \$3,672                  | Rabbit           |
| Anti-Murine IL-4                                       | 500-P54                | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Rabbit           |
| Biotinylated Anti-mIL-4                                | 500-P54BT              | 25 µg: \$211                 | 50 µg: \$270                  | 1 mg: \$3,672                  | Rabbit           |
| Anti-Rat IL-4                                          | 500-P94                | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Rabbit           |
| Biotinylated Anti-rIL-4                                | 500-P94BT              | 25 µg: \$211                 | 50 µg: \$270                  | 1 mg: \$3,672                  | Rabbit           |
| Anti-Human sIL-4 Receptor α                            | 500-P325               | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Rabbit           |
| Biotinylated Anti-hsIL-4 Receptor α                    | 500-P325BT             | 25 µg: \$211                 | 50 µg: \$270                  | 1 mg: \$3,672                  | Rabbit           |
| Anti-Human IL-5                                        | 500-P25                | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Rabbit           |
| Biotinylated Anti-hIL-5                                | 500-P25BT              | 25 µg: \$211                 | 50 µg: \$270                  | 1 mg: \$3,672                  | Rabbit           |
| Anti-Murine IL-5                                       | 500-P55                | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Rabbit           |
| Biotinylated Anti-mIL-5                                | 500-P55BT              | 25 µg: \$211                 | 50 µg: \$270                  | 1 mg: \$3,672                  | Rabbit           |
| Anti-Human IL-6                                        | 500-P26                | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Rabbit           |
| Biotinylated Anti-hIL-6                                | 500-P26BT              | 25 µg: \$211                 | 50 µg: \$270                  | 1 mg: \$3,672                  | Rabbit           |
| Anti-Human IL-6                                        | 500-P26G               | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Goat             |
| Biotinylated Anti-hIL-6                                | 500-P26GBT             | 25 µg: \$211                 | 50 µg: \$270                  | 1 mg: \$3,672                  | Goat             |
| Anti-Murine IL-6                                       | 500-P56                | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Rabbit           |
| Biotinylated Anti-mIL-6                                | 500-P56BT              | 25 µg: \$211                 | 50 µg: \$270                  | 1 mg: \$3,672                  | Rabbit           |
| Anti-Rat IL-6                                          | 500-P73                | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Rabbit           |
| Biotinylated Anti-rIL-6                                | 500-P73BT              | 25 µg: \$211                 | 50 µg: \$270                  | 1 mg: \$3,672                  | Rabbit           |
| Anti-Rat IL-6                                          | 500-P73G               | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Goat             |
| Biotinylated Anti-rIL-6                                | 500-P73GBT             | 25 µg: \$211                 | 50 µg: \$270                  | 1 mg: \$3,672                  | Goat             |
| Anti-Human IL-7                                        | 500-P27                | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Rabbit           |
| Biotinylated Anti-hIL-7                                | 500-P27BT              | 25 µg: \$211                 | 50 μg: \$270                  | 1 mg: \$3,672                  | Rabbit           |
| Anti-Murine IL-7                                       | 500-P57                | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Rabbit           |
| Biotinylated Anti-mIL-7                                | 500-P57BT              | 25 µg: \$211                 | 50 μg: \$270                  | 1 mg: \$3,672                  | Rabbit           |
| Anti-Rat IL-7                                          | 500-P310               | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Rabbit           |
| Biotinylated Anti-rIL-7                                | 500-P310BT             | 25 µg: \$211                 | 50 μg: \$270                  | 1 mg: \$3,672                  | Rabbit           |
| Anti-Human IL-8 (CXCL8)                                | 500-P310B1             | 50 µg: \$211                 | 100 µg: \$270                 | 1 mg: \$1,836                  | Rabbit           |
| Biotinylated Anti-hIL-8 (CXCL8)                        | 500-P28                | 25 µg: \$211                 | 50 μg: \$270                  | 1 mg: \$3,672                  | Rabbit           |

| Description                | Cat. No.     | Size A       | Size B        | Price per mg  | Source |
|----------------------------|--------------|--------------|---------------|---------------|--------|
| Anti-Human IL-9            | 500-P29      | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIL-9    | 500-P29BT    | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Murine IL-9           | 500-P59      | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mIL-9    | 500-P59BT    | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human IL-10           | 500-P20      | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIL-10   | 500-P20BT    | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Murine IL-10          | 500-P60      | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mIL-10   | 500-P60BT    | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Rat IL-10             | 500-P139     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-rIL-10   | 500-P139BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human IL-11           | 500-P01      | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIL-11   | 500-P01BT    | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human IL-12           | 500-P154HG   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hIL-12   | 500-P154HGBT | 25 µg: \$211 | 50 µg: 250    | 1 mg: \$3,672 | Goat   |
| Anti-Human IL-12           | 500-P154G    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hIL-12   | 500-P154GBT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Murine IL-12          | 500-P155G    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-mIL-12   | 500-P155GBT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human IL-13           | 500-P13      | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIL-13   | 500-P13BT    | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Murine IL-13          | 500-P178     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mIL-13   | 500-P178BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Rat IL-13             | 500-P224     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-rIL-13   | 500-P224BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human IL-15           | 500-P15      | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIL-15   | 500-P15BT    | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Murine IL-15          | 500-P173     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mIL-15   | 500-P173BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human IL-16           | 500-P06      | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIL-16   | 500-P06BT    | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human IL-17A          | 500-P07      | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIL-17A  | 500-P07BT    | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human IL-17A          | 500-P07G     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hIL-17A  | 500-P07GBT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Murine IL-17A         | 500-P265     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mIL-17A  | 500-P265BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human IL-17B          | 500-P248     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIL-17B  | 500-P248BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human IL-17D          | 500-P88      | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIL-17D  | 500-P88BT    | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human IL-17E          | 500-P89      | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIL-17E  | 500-P89BT    | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human IL-17F          | 500-P90      | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIL-17F  | 500-P90BT    | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Murine IL-18BP        | 500-P153G    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-mIL-18BP | 500-P153GBT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human IL-19           | 500-P189     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIL-19   | 500-P189BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human IL-20           | 500-P190G    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hIL-20   | 500-P190GBT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human IL-21           | 500-P191     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIL-21   | 500-P191BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Murine IL-21          | 500-P278     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mIL-21   | 500-P278BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human IL-22           | 500-P211     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hIL-22   | 500-P211BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Murine IL-22          | 500-P223     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mIL-22   | 500-P223BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
|                            |              |              |               |               |        |

| Description                            | Cat. No.    | Size A       | Size B        | Price per mg  | Source           |
|----------------------------------------|-------------|--------------|---------------|---------------|------------------|
| Anti-Human IL-31                       | 500-P249    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-hIL-31               | 500-P249BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit           |
| Anti-Human IL-33                       | 500-P261    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-hIL-33               | 500-P261BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit           |
| Anti-Human IL-36y (IL-1F9)             | 500-P316    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-hIL-36y (IL-1F9)     | 500-P316BT  | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit           |
| Anti-Human IP-10 (CXCL10)              | 500-P93     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-hIP-10 (CXCL10)      | 500-P93BT   | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit           |
| Anti-Murine IP-10 (CXCL10)             | 500-P129    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-mIP-10 (CXCL10)      | 500-P129BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit           |
| Anti-Rat IP-10 (CXCL10)                | 500-P290    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-rIP-10 (CXCL10)      | 500-P290BT  | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit           |
| Anti-Human I-TAC (CXCL11)              | 500-P132    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-hI-TAC (CXCL11)      | 500-P132BT  | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit           |
| Anti-Murine JE/MCP-1(CCL2)             | 500-P113    |              | 100 µg: \$270 |               |                  |
| × /                                    | 500-P113BT  | 50 µg: \$211 | 50 μg: \$270  | 1 mg: \$1,836 | Rabbit<br>Rabbit |
| Biotinylated Anti-mJE/MCP-1 (CCL2)     |             | 25 µg: \$211 |               | 1 mg: \$3,672 |                  |
| Anti-Murine KC (CXCL1)                 | 500-P115    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-mKC (CXCL1)          | 500-P115BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit           |
| Anti-Human KGF (FGF-7)                 | 500-P19     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-hKGF (FGF-7)         | 500-P19BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit           |
| Anti-Human Klotho                      | 500-P296    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-hKlotho              | 500-P296BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit           |
| Anti-Human LD78β (CCL3L1)              | 500-P187G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat             |
| Biotinylated Anti-hLD78β (CCL3L1)      | 500-P187GBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat             |
| Anti-Human LEC (CCL16)                 | 500-P125G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat             |
| Biotinylated Anti-hLEC (CCL16)         | 500-P125GBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat             |
| Anti-Human Leptin                      | 500-P86     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-hLeptin              | 500-P86BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit           |
| Anti-Murine Leptin                     | 500-P68     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-mLeptin              | 500-P68BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit           |
| Anti-Rat Leptin                        | 500-P185G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat             |
| Biotinylated Anti-rLeptin              | 500-P185GBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat             |
| Anti-Human LIF                         | 500-P39     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-hLIF                 | 500-P39BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit           |
| Anti-Human LIGHT                       | 500-P179    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-hLIGHT               | 500-P179BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit           |
| Anti-Murine LIGHT                      | 500-P308    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-mLIGHT               | 500-P308BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit           |
| Anti-Murine LIX (CXCL6)                | 500-P146    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-mLIX (CXCL6)         | 500-P146BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit           |
| Anti-Human Lymphotactin (XCL1)         | 500-P40     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-hLymphotactin (XCL1) | 500-P40BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit           |
| Anti-Human Maspin                      | 500-P270    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-hMaspin              | 500-P270BT  | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit           |
| Anti-Human MCP-1 (CCL2)                | 500-P34     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-hMCP-1 (CCL2)        | 500-P34BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit           |
| Anti-Rat MCP-1 (CCL2)                  | 500-P76     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-rMCP-1 (CCL2)        | 500-P76BT   | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit           |
| Anti-Human MCP-2 (CCL8)                | 500-P35     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-hMCP-2 (CCL8)        | 500-P35BT   |              | 50 μg: \$270  | ~             |                  |
| Anti-Murine MCP-2 (CCL8)               | 500-P35B1   | 25 µg: \$211 |               | 1 mg: \$3,672 | Rabbit<br>Rabbit |
| · · · · ·                              |             | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 |                  |
| Biotinylated Anti-mMCP-2 (CCL8)        | 500-P127BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit           |
| Anti-Human MCP-3 (CCL7)                | 500-P37G    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat             |
| Biotinylated Anti-hMCP-3 (CCL7)        | 500-P37GBT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat             |
| Anti-Murine MCP-3 (CCL7)               | 500-P116G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat             |
| Biotinylated Anti-mMCP-3 (CCL7)        | 500-P116GBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat             |
| Anti-Human MCP-4 (CCL13)               | 500-P04     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit           |
| Biotinylated Anti-hMCP-4 (CCL13)       | 500-P04BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit           |

| Description                         | Cat. No.    | Size A       | Size B        | Price per mg  | Source |
|-------------------------------------|-------------|--------------|---------------|---------------|--------|
| Anti-Human MCP-4 (CCL13)            | 500-P04G    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hMCP-4 (CCL13)    | 500-P04GBT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Murine MCP-5 (CCL12)           | 500-P61     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mMCP-5 (CCL12)    | 500-P61BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human M-CSF                    | 500-P44     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hM-CSF            | 500-P44BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Murine M-CSF                   | 500-P62G    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-mM-CSF            | 500-P62GBT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human MDC (CCL22)              | 500-P107    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hMDC (CCL22)      | 500-P107BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Murine MDC (CCL22)             | 500-P176    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mMDC (CCL22)      | 500-P176BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human MEC (CCL28)              | 500-P297    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hMEC (CCL28)      | 500-P297BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human MIA                      | 500-P243    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hMIA              | 500-P243BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human MIA-2                     | 500-P255    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hMIA-2            | 500-P255BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human Midkine                   | 500-P171    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hMidkine          | 500-P171BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human MIG (CXCL9)               | 500-P50     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hMIG (CXCL9)      | 500-P50BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human MIP-1a (CCL3)             | 500-P38     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| liotinylated Anti-hMIP-1a (CCL3)    | 500-P38BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Murine MIP-1a (CCL3)            | 500-P121    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-mMIP-1α (CCL3)     | 500-P121BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Rat MIP-1α (CCL3)               | 500-P77     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| liotinylated Anti-rMIP-1α (CCL3)    | 500-P77BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human MIP-1β (CCL4)             | 500-P38B    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hMIP-1β (CCL4)    | 500-P38BBT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Murine MIP-1β (CCL4)            | 500-P213    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| liotinylated Anti-mMIP-1β (CCL4)    | 500-P213BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Murine MIP-1γ (CCL9/10)         | 500-P117    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| liotinylated Anti-mMIP-1γ (CCL9/10) | 500-P117BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Murine MIP-2 (CXCL2)            | 500-P130    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mMIP-2 (CXCL2)    | 500-P130BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human MIP-3 (CCL23)             | 500-P124    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hMIP-3 (CCL23)    | 500-P124BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human MIP-3α (CCL20)            | 500-P95A    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hMIP-3α (CCL20)   | 500-P95ABT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human MIP-3β (CCL19)            | 500-P95B    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hMIP-3β (CCL19)   | 500-P95BBT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human MIP-4 (CCL18)             | 500-P108    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| liotinylated Anti-hMIP-4 (CCL18)    | 500-P108BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human MIP-5 (CCL15)             | 500-P123G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| iotinylated Anti-hMIP-5 (CCL15)     | 500-P123GBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| nti-Human MMP-2                     | 500-P307    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| liotinylated Anti-hMMP-2            | 500-P307BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human MMP-3                     | 500-P324    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| liotinylated Anti-hMMP-3            | 500-P324BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human Nanog                     | 500-P236    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hNanog            | 500-P236BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human NAP-2 (CXCL7)             | 500-P03     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hNAP-2 (CXCL7)     | 500-P03BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human NAP-2 (CXCL7)             | 500-P03G    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| liotinylated Anti-hNAP-2 (CXCL7)    | 500-P03GBT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human Neuroserpin              | 500-P271    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hNeuroserpin      | 500-P271BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |

| Description                       | Cat. No.               | Size A       | Size B        | Price per mg  | Source |
|-----------------------------------|------------------------|--------------|---------------|---------------|--------|
| Anti-Human Neurturin              | 500-P102               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hNeurturin      | 500-P102BT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human β-NGF                  | 500-P85                | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hβ-NGF          | 500-P85BT              | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human NNT-1/BCSF-3           | 500-P186               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hNNT-1/BCSF-3   | 500-P186BT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human NOV                    | 500-P257               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hNOV            | 500-P257BT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human NP-1                   | 500-P126G              | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hNP-1           | 500-P126GBT            | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human NT-3                   | 500-P82                | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hNT-3           | 500-P82BT              | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human NT-3                   | 500-P82G               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hNT-3           | 500-P82GBT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human NT-4                   | 500-P83G               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hNT-4           | 500-P83GBT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human NT-4                   | 500-P83                | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hNT-4           | 500-P83BT              | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human Oncostatin M            | 500-P30                | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hOncostatin M   | 500-P30BT              | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human OPG                    | 500-P149               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hOPG            | 500-P149BT             | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human Osteopontin            | 500-P314               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hOsteopontin    | 500-P314BT             | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit |
| Inti-Human p16-INK4a-TAT          | 500-P284T              | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hp16-INK4a-TAT  | 500-P284TBT            | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Inti-Human PAI-1                  | 500-P260               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hPAI-1          | 500-P260BT             | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit |
| Inti-Human PDGF-AA                | 500-P46                | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hPDGF-AA        | 500-P46BT              | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human PDGF-BB                | 500-P47                | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hPDGF-BB        | 500-P47BT              | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human PD-L1 Fc               | 500-P321               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hPD-L1 Fc       | 500-P321BT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human Persephin              | 500-P138               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hPersephin      | 500-P138BT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human PEDF                   | 500-P263               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hPEDF           | 500-P263BT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Inti-Human PF-4 (CXCL4)           | 500-P05                | 50 μg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hPF-4 (CXCL4)   | 500-P05BT              | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit |
| Inti-Human PIGF-1                 | 500-P226               | 50 μg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hPIGF-1         | 500-P226BT             | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit |
| Inti-Human PTHrP                  | 500-P276               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hPTHrP          | 500-P276BT             | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit |
| Inti-Human sRANK Ligand           | 500-P133               | 50 μg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hsRANK Ligand   | 500-P133BT             | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit |
| Inti-Human sRANK Ligand           | 500-P133G              |              | 100 μg: \$270 | 1 mg: \$1,836 | Goat   |
| Siotinylated Anti-hsRANK Ligand   | 500-P133GBT            | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Goat   |
| Inti-Murine sRANK Ligand          | 500-P63                | 50 μg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-msRANK Ligand   | 500-P63BT              | 25 µg: \$211 | 50 μg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human sRANK Receptor          | 500-P63B1              | 50 μg: \$211 | 100 µg: \$270 | 1 mg: \$3,672 | Rabbit |
|                                   | 500-P144<br>500-P144BT |              |               | ~             | Rabbit |
| Biotinylated Anti-hsRANK Receptor |                        | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 |        |
| Inti-Human RANTES (CCL5)          | 500-P36                | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hRANTES (CCL5)  | 500-P36BT              | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
|                                   | 500-P118               | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mRANTES (CCL5)  | 500-P118BT             | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Rat RANTES (CCL5)            | 500-P78                | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-rRANTES (CCL5)  | 500-P78BT              | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |

| Description                        | Cat. No.    | Size A       | Size B        | Price per mg  | Source |
|------------------------------------|-------------|--------------|---------------|---------------|--------|
| Anti-Murine RELMa                  | 500-P214    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mRELMa           | 500-P214BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human RELMβ                   | 500-P217    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hRELMβ           | 500-P217BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Murine RELMβ                  | 500-P215    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mRELMβ           | 500-P215BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human Resistin                | 500-P183    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hResistin        | 500-P183BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human Resistin                | 500-P183G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hResistin        | 500-P183GBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Murine Resistin               | 500-P182G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-mResistin        | 500-P182GBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human SCF                     | 500-P48     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hSCF             | 500-P48BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human SCF                     | 500-P48G    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hSCF             | 500-P48GBT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Murine SCF                    | 500-P71     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mSCF             | 500-P71BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Rat SCF                       | 500-P202    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-rSCF             | 500-P202BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human SCGF-α                  | 500-P162    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hSCGF-α          | 500-P162BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human SCGF-β                  | 500-P99G    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hSCGF-β          | 500-P99GBT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human SDF-1α (CXCL12)         | 500-P87A    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hSDF-1α (CXCL12) | 500-P87ABT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Murine SDF-1a (CXCL12)        | 500-P164G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-mSDF-1a (CXCL12) | 500-P164GBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Rat SDF-1α (CXCL12)           | 500-P315    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-rSDF-1α (CXCL12) | 500-P315BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human SDF-1β (CXCL12)         | 500-P87BG   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hSDF-1β (CXCL12) | 500-P87BGBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Murine SF-20                  | 500-P259    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mSF-20           | 500-P259BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human TACI                    | 500-P166G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hTACI            | 500-P166GBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Human TARC (CCL17)            | 500-P97     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hTARC (CCL17)    | 500-P97BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human TECK (CCL25)            | 500-P134    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hTECK (CCL25)    | 500-P134BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human TFF-2                   | 500-P312    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hTFF-2           | 500-P312BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human TGF-α                   | 500-P16     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hTGF-α           | 500-P16BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human TGF-β3                  | 500-P317    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hTGF-β3          | 500-P317BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human TIMP-1                  | 500-P280    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hTIMP-1          | 500-P280BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human TL-1A                   | 500-P240    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hTL-1A           | 500-P240BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human TNF-α                   | 500-P31A    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hTNF-α           | 500-P31ABT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human TNF-α                   | 500-P31AG   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-hTNF-α           | 500-P31AGBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| Anti-Murine TNF-α                  | 500-P64     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-mTNF-α           | 500-P64BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Murine TNF-α                  | 500-P64G    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| Biotinylated Anti-mTNF-α           | 500-P64GBT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |

| Description                              | Cat. No.    | Size A       | Size B        | Price per mg  | Source |
|------------------------------------------|-------------|--------------|---------------|---------------|--------|
| Anti-Rat TNF-α                           | 500-P72     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-rTNF-α                 | 500-P72BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| Anti-Human TNF-β                         | 500-P31B    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hTNF-β                 | 500-P31BBT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human sTNF Receptor Type I           | 500-P143    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hsTNF Receptor Type I  | 500-P143BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human sTNF Receptor Type II          | 500-P168    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hsTNF Receptor Type II | 500-P168BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human TPO                            | 500-P49     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| liotinylated Anti-hTPO                   | 500-P49BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human TPO                            | 500-P49G    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| iotinylated Anti-hTPO                    | 500-P49GBT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| nti-Human sTRAIL/Apo2L                   | 500-P135    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hsTRAIL/Apo2L           | 500-P135BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Murine TRAIL                         | 500-P303    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-mTRAIL                  | 500-P303BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human sTRAIL Receptor-2              | 500-P299    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hsTRAIL Receptor-2      | 500-P299BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human TSLP                           | 500-P258    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hTSLP                   | 500-P258BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human TWEAK                          | 500-P137G   | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| iotinylated Anti-hTWEAK                  | 500-P137GBT | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| nti-Human Uteroglobin                    | 500-P330    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hUteroglobin            | 500-P330BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human VAP-1                          | 500-P326    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hVAP-1                  | 500-P326BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human Vaspin                         | 500-P256    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hVaspin                 | 500-P256BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human VCAM-1                         | 500-P300    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hVCAM-1                 | 500-P300BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human VEGF <sub>165</sub>            | 500-P10     | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hVEGF165                | 500-P10BT   | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human VEGF <sub>165</sub>            | 500-P10G    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Goat   |
| iotinylated Anti-hVEGF <sub>165</sub>    | 500-P10GBT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Goat   |
| nti-Murine VEGF <sub>165</sub>           | 500-P131    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-mVEGF <sub>165</sub>    | 500-P131BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Rat VEGF <sub>165</sub>              | 500-P275    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-rVEGF <sub>165</sub>    | 500-P275BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human VEGF-B                         | 500-P267    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| iotinylated Anti-hVEGF-B                 | 500-P267BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human Visfatin                       | 500-P222    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| liotinylated Anti-hVisfatin              | 500-P222BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human Wnt-1                          | 500-P250    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hWnt-1                 | 500-P250BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |
| nti-Human Wnt-3a                         | 500-P251    | 50 µg: \$211 | 100 µg: \$270 | 1 mg: \$1,836 | Rabbit |
| Biotinylated Anti-hWnt-3a                | 500-P251BT  | 25 µg: \$211 | 50 µg: \$270  | 1 mg: \$3,672 | Rabbit |

# **Control antibodies**

Invitrogen<sup>™</sup> PeproTech<sup>™</sup> control antibodies are produced from the sera of goats, mice, and rabbits that have not been previously immunized, and are purified by protein G affinity chromatography, affinity chromatography, gel filtration chromatography, ammonium sulfate precipitation, or protein A chromatography. These immunoglobulin products can be used as control reagents for immunoassays using the respective polyclonal and monoclonal antibodies.

#### PeproTech control antibodies

| Description                  | Cat. No. | Size A | Price |  |
|------------------------------|----------|--------|-------|--|
| Normal Goat Immunoglobulin   | 500-G00  | 1 mg   | \$71  |  |
| Normal Rabbit Immunoglobulin | 500-P00  | 500 µg | \$54  |  |
| Normal Mouse Immunoglobulin  | 500-M00  | 1 mg   | \$71  |  |

# **Monoclonal antibodies**

Invitrogen<sup>™</sup> PeproTech<sup>™</sup> monoclonal antibodies are raised against full-length recombinant antigens and have been thoroughly screened for performance in a variety of applications.

#### PeproTech monoclonal antibodies

| Description                         | Cat. No. | Size   | Price | Source |
|-------------------------------------|----------|--------|-------|--------|
| Anti-Human Adiponectin              | 500-M126 | 500 µg | \$162 | Mouse  |
| Anti-Human BAFF                     | 500-M64  | 500 µg | \$162 | Mouse  |
| Anti-Human BMP-4                    | 500-M121 | 500 µg | \$162 | Mouse  |
| Anti-Human BMP-7                    | 500-M123 | 500 µg | \$162 | Mouse  |
| Anti-Human CRP                      | 500-M50  | 500 µg | \$162 | Mouse  |
| Anti-Human Eotaxin (CCL11)          | 500-M25  | 500 µg | \$162 | Mouse  |
| Anti-Human Eotaxin-2 (CCL24)        | 500-M31  | 500 µg | \$162 | Mouse  |
| Anti-Human Eotaxin-3 (CCL26)        | 500-M32  | 500 µg | \$162 | Mouse  |
| Anti-Human FGF-Basic (ascites)      | 500-M38  | 500 µg | \$162 | Mouse  |
| Anti-Human FGF-Basic (cell culture) | 500-M38C | 500 µg | \$162 | Mouse  |
| Anti-Human FGF-5                    | 500-M40  | 500 µg | \$162 | Mouse  |
| Anti-Human G-CSF                    | 500-M37  | 500 µg | \$162 | Mouse  |
| Anti-Human IFN-y                    | 500-M90  | 500 µg | \$162 | Mouse  |
| Anti-Human IL-1β                    | 500-M01B | 500 µg | \$162 | Mouse  |
| Anti-Human IL-2                     | 500-M02  | 500 µg | \$162 | Mouse  |
| Anti-Murine IL-2                    | 500-M127 | 500 µg | \$162 | Rat    |
| Anti-Rat IL-2                       | 500-M129 | 500 µg | \$162 | Mouse  |
| Anti-Human sIL-2 Receptor α         | 500-M02R | 500 µg | \$162 | Mouse  |
| Anti-Human IL-3                     | 500-M03  | 500 µg | \$162 | Mouse  |
| Anti-Human IL-4                     | 500-M04  | 500 µg | \$162 | Mouse  |
| Anti-Human IL-6                     | 500-M06  | 500 µg | \$162 | Mouse  |
| Anti-Human IL-7                     | 500-M07  | 500 µg | \$162 | Mouse  |
| Anti-Human IL-8 (CXCL8)             | 500-M08  | 500 µg | \$162 | Mouse  |
| Anti-Human IL-10                    | 500-M86  | 500 µg | \$162 | Mouse  |
| Anti-Murine IL-10                   | 500-M128 | 500 µg | \$162 | Rat    |
| Anti-Rat IL-10                      | 500-M130 | 500 µg | \$162 | Mouse  |
| Anti-Human IL-11                    | 500-M11  | 500 µg | \$162 | Mouse  |
| Anti-Human IL-12                    | 500-M12  | 500 µg | \$162 | Mouse  |
| Anti-Murine IL-12                   | 500-M59  | 500 µg | \$162 | Rat    |
| Anti-Human IL-15                    | 500-M15  | 500 µg | \$162 | Mouse  |
| Anti-Human IP-10 (CXCL10)           | 500-M60  | 500 µg | \$162 | Mouse  |
| Anti-Human LEC (CCL16)              | 500-M43  | 500 µg | \$162 | Mouse  |
| Anti-Human Leptin                   | 500-M27  | 500 µg | \$162 | Mouse  |
| Anti-Human MCP-1 (CCL2)             | 500-M71  | 500 µg | \$162 | Mouse  |
| Anti-Human MCP-2 (CCL8)             | 500-M69  | 500 µg | \$162 | Mouse  |
| Anti-Human MCP-3 (CCL7)             | 500-M73  | 500 µg | \$162 | Mouse  |
| Anti-Human MCP-4 (CCL13)            | 500-M70  | 500 µg | \$162 | Mouse  |
| Anti-Human MDC (CCL22)              | 500-M41  | 500 µg | \$162 | Mouse  |
| Anti-Human MIG (CXCL9)              | 500-M42  | 500 µg | \$162 | Mouse  |
| Anti-Human MIP-1a (CCL3)            | 500-M74  | 500 µg | \$162 | Mouse  |
| Anti-Human MIP-3a (CCL20)           | 500-M28  | 500 µg | \$162 | Mouse  |
| Anti-Human MIP-3β (CCL19)           | 500-M29  | 500 µg | \$162 | Mouse  |
| Anti-Human NAP-2 (CXCL7)            | 500-M33  | 500 µg | \$162 | Mouse  |
| Anti-Human β-NGF                    | 500-M85  | 500 µg | \$162 | Mouse  |
| Anti-Human NT-4                     | 500-M24  | 500 µg | \$162 | Mouse  |
| Anti-Human sRANK Ligand             | 500-M46  | 500 µg | \$162 | Mouse  |
| Anti-Human RANTES (CCL5)            | 500-M75  | 500 µg | \$162 | Mouse  |
| Anti-Human Resistin                 | 500-M91  | 500 µg | \$162 | Mouse  |
| Anti-Human SCF                      | 500-M44  | 500 µg | \$162 | Mouse  |
| Anti-Human TECK (CCL25)             | 500-M48  | 500 µg | \$162 | Mouse  |
| Anti-Human TGF-β1                   | 500-M66  | 500 µg | \$162 | Mouse  |
| Anti-Human TNF-a                    | 500-M26  | 500 μg | \$162 | Mouse  |
| Anti-Human sTRAIL/Apo2L             | 500-M49  | 500 μg | \$162 | Mouse  |
| ANII-HUMAN SEBAIL /ADOZI            |          |        |       |        |

# **ABTS ELISA kits**

Invitrogen<sup>™</sup> PeproTech<sup>™</sup> ABTS ELISA development kits contain the key components required for quantitative measurement of natural or recombinant proteins in a sandwich ELISA format. Each PeproTech ABTS ELISA development kit contains a capture antibody, a biotinylated detection antibody, a calibrated antigen standard, an egg white avidin-HRP conjugate, and a kit-specific protocol.

Each standard PeproTech ABTS ELISA development kit contains enough material to assay the target cytokine in approximately 1,000 ELISA plate wells.

#### PeproTech ABTS ELISA kits

| Description              | Cat. No. | Price |
|--------------------------|----------|-------|
| Human 4-1BB Receptor     | 900-K208 | \$346 |
| Human BD-1               | 900-K202 | \$346 |
| Human BD-2               | 900-K172 | \$346 |
| Human BD-3               | 900-K210 | \$346 |
| Human BD-4               | 900-K435 | \$346 |
| Human Betacellulin       | 900-K372 | \$346 |
| Human/Murine/Rat BMP-2   | 900-K255 | \$346 |
| Human sCD40 Ligand       | 900-K145 | \$346 |
| Human CNTF               | 900-K158 | \$346 |
| Rat CNTF                 | 900-K65  | \$346 |
| Human CTACK (CCL27)      | 900-K213 | \$346 |
| Human CTGF               | 900-K317 | \$346 |
| Human CXCL16             | 900-K230 | \$346 |
| Human EGF                | 900-K05  | \$346 |
| Murine EGF               | 900-K179 | \$346 |
| Rat EGF                  | 900-K390 | \$346 |
| Human EG-VEGF            | 900-K244 | \$346 |
| Human Eotaxin (CCL11)    | 900-K69  | \$346 |
| Murine Eotaxin (CCL11)   | 900-K68  | \$346 |
| Human Eotaxin-3 (CCL26)  | 900-K167 | \$346 |
| Murine Exodus-2 (CCL21)  | 900-K132 | \$346 |
| Human FGF-Basic          | 900-K08  | \$352 |
| Human Follistatin        | 900-K299 | \$346 |
| Human G-CSF              | 900-K77  | \$346 |
| Murine G-CSF             | 900-K103 | \$346 |
| Human GM-CSF             | 900-K30  | \$346 |
| Murine GM-CSF            | 900-K55  | \$346 |
| Human GRO-α/MGSA (CXCL1) | 900-K38  | \$346 |
| Rat GRO/KC (CXCL1)       | 900-K57  | \$346 |
| Human GRO-β (CXCL2)      | 900-K120 | \$346 |
| Human Heregulin β-1      | 900-K316 | \$346 |
| Human ICAM-1             | 900-K464 | \$346 |
| Human IFN-γ              | 900-K27  | \$346 |
| Murine IFN-γ             | 900-K98  | \$346 |
| Rat IFN-γ                | 900-K109 | \$346 |
| Human IGF-BP1            | 900-K315 | \$346 |
| Murine IGF-I             | 900-K170 | \$346 |
| Human IL-1α              | 900-K11  | \$346 |
| Murine IL-1a             | 900-K82  | \$346 |
| Rat IL-1a                | 900-K204 | \$346 |
| Human IL-1β              | 900-K95  | \$346 |
| Murine IL-1β             | 900-K47  | \$346 |
| Rat IL-1β                | 900-K91  | \$346 |

#### PeproTech ABTS ELISA kits

| Description                               | Cat. No.           | Price |
|-------------------------------------------|--------------------|-------|
| Human IL-1RA                              | 900-K474           | \$346 |
| Human IL-2                                | 900-K12            | \$346 |
| Murine IL-2                               | 900-K108           | \$346 |
| Rat IL-2                                  | 900-K205           | \$346 |
| Human IL-3                                | 900-K13            | \$346 |
| Murine IL-3                               | 900-K48            | \$346 |
| Human IL-4                                | 900-K14            | \$346 |
| Murine IL-4                               | 900-K49            | \$346 |
| Human IL-5                                | 900-K15            | \$346 |
| Murine IL-5                               | 900-K406           | \$346 |
| Human IL-6                                | 900-K16            | \$346 |
| Murine IL-6                               | 900-K50            | \$346 |
| Rat IL-6                                  | 900-K86            | \$346 |
| Human IL-7                                | 900-K17            | \$346 |
| Human IL-8 (CXCL8)                        | 900-K18            | \$346 |
| Human IL-9                                | 900-K20            | \$346 |
| Human IL-10                               | 900-K21            | \$346 |
| Murine IL-10                              | 900-K53            | \$346 |
| Human IL-11                               | 900-K22            | \$346 |
| Human IL-12                               | 900-K96            | \$346 |
| Murine IL-12                              | 900-K97            | \$346 |
| Human IL-13                               | 900-K23            | \$346 |
| Murine IL-13                              | 900-K207           | \$346 |
| Murine IL-15                              | 900-K188           | \$346 |
| Human IL-17A                              | 900-K84            | \$346 |
| Murine IL-17A                             | 900-K392           | \$346 |
| Human IL-17E                              | 900-K234           | \$346 |
| Human IL-17F                              | 900-K277           | \$346 |
| Human IL-20                               | 900-K224           | \$346 |
| Human IL-21                               | 900-K226           | \$346 |
| Murine IL-21                              | 900-K368           | \$346 |
| Human IL-22                               | 900-K246           | \$346 |
| Murine IL-22                              | 900-K257           | \$346 |
| Human IL-31                               | 900-K347           | \$346 |
| Human IL-33                               | 900-K398           | \$346 |
| Human IP-10 (CXCL10)                      | 900-K39            | \$346 |
| Murine IP-10 (CXCL10)                     | 900-K153           | \$346 |
| Rat IP-10 (CXCL10)                        | 900-K449           | \$346 |
| Human I-TAC (CXCL11)                      | 900-K151           | \$346 |
| Murine JE/MCP-1 (CCL2)                    | 900-K126           | \$346 |
| Murine KC (CXCL1)                         | 900-K127           | \$346 |
| Human Leptin                              | 900-K90            | \$346 |
| Murine Leptin                             | 900-K76            | \$346 |
| Human MCP-1 (CCL2)                        | 900-K31            | \$346 |
| Rat MCP-1 (CCL2)                          | 900-K59            | \$346 |
| Human MCP-2 (CCL8)                        | 900-K41            | \$346 |
| Murine MCP-3 (CCL7)                       | 900-K123           | \$346 |
| Murine M-CSF                              | 900-K245           | \$346 |
| Murine MDC (CCL22)                        | 900-K197           | \$346 |
| Human MIA-2                               | 900-K357           | \$346 |
| Human Midkine                             | 900-K190           | \$340 |
| Human MIG (CXCL9)                         | 900-K87            | \$340 |
| Human MIP-1α (CCL3)                       | 900-K87<br>900-K35 | \$346 |
|                                           |                    | \$346 |
| Murine MIP-1a (CCL3)                      | 900-K125           |       |
| Rat MIP-1α (CCL3)<br>Murine MIP-1β (CCL4) | 900-K75            | \$346 |
|                                           | 900-K278           | \$346 |
| Murine MIP-2 (CXCL2)                      | 900-K152           | \$346 |

#### PeproTech ABTS ELISA kits

| Human Neuroserpin         900-K412         \$346           Human β-NGF         900-K60         \$346           Human PNOV         900-K338         \$346           Human PNOV         900-K338         \$346           Human PDGF-BB         900-K04         \$346           Human PDGF-1         900-K337         \$346           Human PGF-1         900-K307         \$346           Human SRANK Ligand         900-K142         \$346           Human RANTES (CCL5)         900-K133         \$346           Human RANTES (CCL5)         900-K124         \$346           Human SCF         900-K72         \$346           Human SCF         900-K72         \$346           Human SCF         900-K78         \$346           Human SDF-tq (CXCL12)         900-K235         \$346           Human TACI         900-K258         \$346           Human TACI         900-K216         \$346           Human TNP-1         900-K23         \$346           Human TNP-1         900-K23         \$346           Human TACI         900-K23         \$346           Human TNP-1         900-K43         \$346           Human TNP-1         900-K23         \$346 <t< th=""><th>Description</th><th>Cat. No.</th><th>Price</th></t<> | Description                | Cat. No. | Price |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------|-------|
| Human β-NGF         900-K60         \$346           Human NOV         900-K338         \$346           Human PAI-1         900-K338         \$346           Human PGF-BB         900-K04         \$346           Human PIGF-1         900-K307         \$346           Human SRANK Ligand         900-K142         \$346           Murine sRANK Ligand         900-K33         \$346           Murine RANTES (CCL5)         900-K33         \$346           Murine RANTES (CCL5)         900-K72         \$346           Murine RANTES (CCL5)         900-K72         \$346           Human SCF         900-K72         \$346           Human SCF         900-K78         \$346           Human SCF         900-K78         \$346           Human TACI         900-K428         \$346           Human TACI         900-K25         \$346           Human TMP-1         900-K26         \$346           Human TIMP-1         900-K25         \$346           Human TIMP-1         900-K25         \$346           Human TIMP-3         900-K25         \$346           Human TIM-4         900-K25         \$346           Human TPO         900-K43         \$346                                                                      | Human NAP-2 (CXCL7)        | 900-K40  | \$346 |
| Human NOV         900-K338         \$346           Human PAI-1         900-K383         \$346           Human PDGF-BB         900-K04         \$346           Human RGF-1         900-K307         \$346           Human SRANK Ligand         900-K142         \$346           Murine sRANK Ligand         900-K337         \$346           Human RANTES (CCL5)         900-K124         \$346           Murine RANTES (CCL5)         900-K72         \$346           Human Resistin         900-K235         \$346           Human SCF         900-K78         \$346           Human SCF         900-K78         \$346           Human SCF         900-K235         \$346           Human SCF         900-K28         \$346           Human SCF         900-K28         \$346           Human TACI         900-K290         \$346           Human TNF-α         900-K438         \$346           Human TNF-α         900-K44         \$346           <                                                                    | Human Neuroserpin          | 900-K412 | \$346 |
| Human PAI-1         900-K383         \$346           Human PDGF-BB         900-K04         \$346           Human PIGF-1         900-K307         \$346           Human SRANK Ligand         900-K142         \$346           Murine sRANK Ligand         900-K233         \$346           Human RANTES (CCL5)         900-K33         \$346           Murine RANTES (CCL5)         900-K72         \$346           Human Resistin         900-K235         \$346           Human SCF         900-K34         \$346           Murine SCF         900-K28         \$346           Human SDF-1α (CXCL12)         900-K285         \$346           Human TACI         900-K216         \$346           Human TACI         900-K230         \$346           Human TNF-α         900-K236         \$346           Human TNF-α         900-K216         \$346           Human TNF-α         900-K230         \$346           Human TNF-α         900-K23         \$346           Human TNF-α         900-K23         \$346           Human TNF-α         900-K23         \$346           Human TNF-α         900-K34         \$346           Human TNF-α         900-K34         \$346                                                        | Human β-NGF                | 900-K60  | \$346 |
| Human PDGF-BB         900-K04         \$346           Human PIGF-1         900-K307         \$346           Human SRANK Ligand         900-K142         \$346           Murine SRANK Ligand         900-K233         \$346           Human RANTES (CCL5)         900-K33         \$346           Murine RANTES (CCL5)         900-K72         \$346           Human Robistin         900-K72         \$346           Human SCCL5)         900-K72         \$346           Human SCF         900-K34         \$346           Murine SCF         900-K78         \$346           Human SDF-1α (CXCL12)         900-K258         \$346           Human TACI         900-K216         \$346           Human TMP-1         900-K26         \$346           Human TMP-1         900-K236         \$346           Human TMP-1         900-K26         \$346           Human TMP-1         900-K276         \$346           Human TMP-1         900-K28         \$346           Human TMP-1         900-K26         \$346           Human TMP-1         900-K26         \$346           Human TNF-α         900-K73         \$346           Human TPO         900-K34         \$346 <td>Human NOV</td> <td>900-K338</td> <td>\$346</td>        | Human NOV                  | 900-K338 | \$346 |
| Human PIGF-1         900-K307         \$346           Human sRANK Ligand         900-K142         \$346           Murine sRANK Ligand         900-K233         \$346           Human RANTES (CCL5)         900-K33         \$346           Murine RANTES (CCL5)         900-K72         \$346           Human Resistin         900-K72         \$346           Human SCF         900-K72         \$346           Human SCF         900-K34         \$346           Murine SCF         900-K235         \$346           Human SDF-1α (CXCL12)         900-K78         \$346           Human TACI         900-K28         \$346           Human TIMP-1         900-K216         \$346           Human TNF-α         900-K25         \$346           Human TNF-α         900-K26         \$346           Human TNF-α         900-K216         \$346           Human TNF-α         900-K25         \$346           Human TNF-α         900-K25         \$346           Human TNF-α         900-K26         \$346           Human TNF-α         900-K25         \$346           Human TNF-α         900-K25         \$346           Human TNF-α         900-K34         \$346                                                               | Human PAI-1                | 900-K383 | \$346 |
| Human sRANK Ligand         900-K142         \$346           Murine sRANK Ligand         900-K233         \$346           Human RANTES (CCL5)         900-K33         \$346           Murine RANTES (CCL5)         900-K72         \$346           Rat RANTES (CCL5)         900-K72         \$346           Human Resistin         900-K235         \$346           Human SCF         900-K78         \$346           Murine SCF         900-K78         \$346           Human SDF-1α (CXCL12)         900-K258         \$346           Human TACI         900-K438         \$346           Human TIMP-1         900-K250         \$346           Human TIMP-1         900-K250         \$346           Human TIMP-1         900-K25         \$346           Human TIMP-1         900-K25         \$346           Human TIMP-1         900-K25         \$346           Human TNF-α         900-K44         \$346           Human TPO         900-K33         \$346           Human TPA         900-K34         \$346           Human TPA         900-K44         \$346           Human TPA         900-K34         \$346           Human TPA         900-K34         \$346                                                             | Human PDGF-BB              | 900-K04  | \$346 |
| Murine sRANK Ligand         900-K233         \$346           Human RANTES (CCL5)         900-K33         \$346           Murine RANTES (CCL5)         900-K124         \$346           Rat RANTES (CCL5)         900-K72         \$346           Human Resistin         900-K235         \$346           Human SCF         900-K34         \$346           Murine SCF         900-K288         \$346           Human SDF-1α (CXCL12)         900-K288         \$346           Human TACI         900-K216         \$346           Human TIMP-1         900-K28         \$346           Human TIMP-1         900-K28         \$346           Human TIMP-1         900-K28         \$346           Human TIMP-1         900-K26         \$346           Human TIMP-1         900-K25         \$346           Human TIMP-1         900-K25         \$346           Human TINF-α         900-K25         \$346           Human TNF-α         900-K24         \$346           Human TNF-α         900-K24         \$346           Human TPO         900-K34         \$346           Human TSLP         900-K34         \$346           Human TSLP         900-K34         \$346                                                             | Human PIGF-1               | 900-K307 | \$346 |
| Human RANTES (CCL5)         900-K33         \$346           Murine RANTES (CCL5)         900-K124         \$346           Rat RANTES (CCL5)         900-K72         \$346           Human Resistin         900-K235         \$346           Human SCF         900-K73         \$346           Murine SCF         900-K78         \$346           Rat SCF         900-K78         \$346           Human SDF-1α (CXCL12)         900-K78         \$346           Human TACI         900-K216         \$346           Human TACI         900-K290         \$346           Human TNP-1         900-K25         \$346           Human TNF-a         900-K25         \$346           Human TNF-a         900-K25         \$346           Human TNF-a         900-K25         \$346           Human TNF-a         900-K73         \$346           Human TNF-a         900-K73         \$346           Human TSAIL/Apo2L         900-K14         \$346           Human TSLP         900-K44         \$346           Human TSLP         900-K149         \$346           Human VEGF <sub>165</sub> 900-K10         \$346                                                                                                                        | Human sRANK Ligand         | 900-K142 | \$346 |
| Murine RANTES (CCL5)         900-K124         \$346           Rat RANTES (CCL5)         900-K72         \$346           Human Resistin         900-K235         \$346           Human SCF         900-K34         \$346           Murine SCF         900-K78         \$346           Rat SCF         900-K258         \$346           Human SDF-1a (CXCL12)         900-K258         \$346           Human TACI         900-K216         \$346           Human TL-1A         900-K25         \$346           Human TNF-a         900-K25         \$346           Human TNF-a         900-K26         \$346           Human TNF-a         900-K25         \$346           Human TNF-a         900-K25         \$346           Human TNF-a         900-K25         \$346           Human TNF-a         900-K34         \$346           Human TNF-a         900-K34         \$346           Human TNF-a         900-K34         \$346           Human TSLP         900-K34         \$346           Human TSLP         900-K34         \$346           Human TSLP         900-K34         \$346           Human VEAK         900-K10         \$346           Human V                                                                       | Murine sRANK Ligand        | 900-K233 | \$346 |
| Rat RANTES (CCL)         900-K72         \$346           Human Resistin         900-K235         \$346           Human SCF         900-K34         \$346           Murine SCF         900-K78         \$346           Rat SCF         900-K258         \$346           Human SDF-1α (CXCL12)         900-K22         \$346           Human TACI         900-K216         \$346           Human TL-1A         900-K290         \$346           Human TNF-α         900-K54         \$346           Murine TNF-α         900-K54         \$346           Human TPO         900-K44         \$346           Human TPO         900-K73         \$346           Human TSLP         900-K44         \$346           Human TSLP         900-K44         \$346           Human TVEAK         900-K149         \$346                                                                                                                                                                                                                                                                                                                                                                                                                            | Human RANTES (CCL5)        | 900-K33  | \$346 |
| Human Resistin       900-K235       \$346         Human SCF       900-K34       \$346         Murine SCF       900-K78       \$346         Rat SCF       900-K258       \$346         Human SDF-1α (CXCL12)       900-K258       \$346         Human TACI       900-K216       \$346         Human TL-1A       900-K290       \$346         Human TNF-α       900-K25       \$346         Murine TNF-α       900-K25       \$346         Murine TNF-α       900-K25       \$346         Human TPO       900-K73       \$346         Human TSLP       900-K141       \$346         Human TSLP       900-K149       \$346         Human TVEAK       900-K10       \$346         Human TVEAK       900-K10       \$346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Murine RANTES (CCL5)       | 900-K124 | \$346 |
| Human SCF900-K34\$346Murine SCF900-K78\$346Rat SCF900-K258\$346Human SDF-1α (CXCL12)900-K92\$346Human TACI900-K216\$346Human TL-1A900-K290\$346Human TNF-α900-K25\$346Murine TNF-α900-K54\$346Human TPO900-K438\$346Human TLPA900-K54\$346Human TLPA900-K73\$346Human TPO900-K44\$346Human TSLP900-K34\$346Human TVEAK900-K149\$346Human VEGF <sub>165</sub> 900-K10\$346Murine VEGF <sub>165</sub> 900-K99\$346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rat RANTES (CCL5)          | 900-K72  | \$346 |
| Murine SCF         900-K78         \$346           Rat SCF         900-K258         \$346           Human SDF-1α (CXCL12)         900-K92         \$346           Human TACI         900-K216         \$346           Human TIMP-1         900-K280         \$346           Human TL-1A         900-K290         \$346           Human TNF-α         900-K25         \$346           Murine TNF-α         900-K54         \$346           Murine TNF-α         900-K73         \$346           Human TPO         900-K73         \$346           Human TSLP         900-K141         \$346           Human TWEAK         900-K149         \$346           Human VEGF <sub>165</sub> 900-K10         \$346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Human Resistin             | 900-K235 | \$346 |
| Rat SCF         900-K258         \$346           Human SDF-1α (CXCL12)         900-K92         \$346           Human TACI         900-K216         \$346           Human TIMP-1         900-K438         \$346           Human TL-1A         900-K290         \$346           Human TNF-α         900-K25         \$346           Murine TNF-α         900-K25         \$346           Murine TNF-α         900-K73         \$346           Human TPO         900-K44         \$346           Human STRAIL/Apo2L         900-K141         \$346           Human TSLP         900-K334         \$346           Human TWEAK         900-K149         \$346           Human VEGF <sub>165</sub> 900-K10         \$346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Human SCF                  | 900-K34  | \$346 |
| Human SDF-1α (CXCL12)       900-K92       \$346         Human TACI       900-K216       \$346         Human TIMP-1       900-K438       \$346         Human TL-1A       900-K290       \$346         Human TNF-α       900-K25       \$346         Murine TNF-α       900-K54       \$346         Murine TNF-α       900-K73       \$346         Human TPO       900-K44       \$346         Human STRAIL/Apo2L       900-K141       \$346         Human TWEAK       900-K149       \$346         Human VEGF <sub>165</sub> 900-K10       \$346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Murine SCF                 | 900-K78  | \$346 |
| Human TACI900-K216\$346Human TIMP-1900-K438\$346Human TL-1A900-K290\$346Human TNF-α900-K25\$346Murine TNF-α900-K54\$346Rat TNF-α900-K73\$346Human TPO900-K44\$346Human STRAIL/Apo2L900-K141\$346Human TWEAK900-K149\$346Human VEGF <sub>165</sub> 900-K10\$346Murine VEGF <sub>165</sub> 900-K99\$346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rat SCF                    | 900-K258 | \$346 |
| Human TIMP-1       900-K438       \$346         Human TL-1A       900-K290       \$346         Human TNF-α       900-K25       \$346         Murine TNF-α       900-K54       \$346         Rat TNF-α       900-K73       \$346         Human TPO       900-K44       \$346         Human TSLP       900-K141       \$346         Human TWEAK       900-K149       \$346         Human VEGF <sub>165</sub> 900-K10       \$346         Murine VEGF <sub>165</sub> 900-K99       \$346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Human SDF-1a (CXCL12)      | 900-K92  | \$346 |
| Human TL-1A       900-K290       \$346         Human TNF-α       900-K25       \$346         Murine TNF-α       900-K54       \$346         Rat TNF-α       900-K73       \$346         Human TPO       900-K44       \$346         Human STRAIL/Apo2L       900-K141       \$346         Human TSLP       900-K334       \$346         Human TWEAK       900-K149       \$346         Human VEGF <sub>165</sub> 900-K10       \$346         Murine VEGF <sub>165</sub> 900-K99       \$346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Human TACI                 | 900-K216 | \$346 |
| Human TNF-α       900-K25       \$346         Murine TNF-α       900-K54       \$346         Rat TNF-α       900-K73       \$346         Human TPO       900-K44       \$346         Human sTRAIL/Apo2L       900-K141       \$346         Human TSLP       900-K334       \$346         Human TWEAK       900-K149       \$346         Murine VEGF <sub>165</sub> 900-K10       \$346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Human TIMP-1               | 900-K438 | \$346 |
| Murine TNF-α         900-K54         \$346           Rat TNF-α         900-K73         \$346           Human TPO         900-K44         \$346           Human sTRAIL/Apo2L         900-K141         \$346           Human TSLP         900-K334         \$346           Human TWEAK         900-K149         \$346           Human VEGF <sub>165</sub> 900-K10         \$346           Murine VEGF <sub>165</sub> 900-K99         \$346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Human TL-1A                | 900-K290 | \$346 |
| Rat TNF-α         900-K73         \$346           Human TPO         900-K44         \$346           Human sTRAIL/Apo2L         900-K141         \$346           Human TSLP         900-K334         \$346           Human TWEAK         900-K149         \$346           Human VEGF <sub>165</sub> 900-K10         \$346           Murine VEGF <sub>165</sub> 900-K99         \$346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Human TNF-α                | 900-K25  | \$346 |
| Human TPO       900-K44       \$346         Human sTRAIL/Apo2L       900-K141       \$346         Human TSLP       900-K334       \$346         Human TWEAK       900-K149       \$346         Human VEGF <sub>165</sub> 900-K10       \$346         Murine VEGF <sub>165</sub> 900-K99       \$346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Murine TNF-a               | 900-K54  | \$346 |
| Human sTRAIL/Apo2L         900-K141         \$346           Human TSLP         900-K334         \$346           Human TWEAK         900-K149         \$346           Human VEGF <sub>165</sub> 900-K10         \$346           Murine VEGF <sub>165</sub> 900-K99         \$346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rat TNF-α                  | 900-K73  | \$346 |
| Human TSLP         900-K334         \$346           Human TWEAK         900-K149         \$346           Human VEGF <sub>165</sub> 900-K10         \$346           Murine VEGF <sub>165</sub> 900-K99         \$346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Human TPO                  | 900-K44  | \$346 |
| Human TWEAK         900-K149         \$346           Human VEGF <sub>165</sub> 900-K10         \$346           Murine VEGF <sub>165</sub> 900-K99         \$346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Human sTRAIL/Apo2L         | 900-K141 | \$346 |
| Human VEGF <sub>165</sub> 900-K10         \$346           Murine VEGF <sub>165</sub> 900-K99         \$346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Human TSLP                 | 900-K334 | \$346 |
| Murine VEGF <sub>165</sub> 900-K99         \$346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Human TWEAK                | 900-K149 | \$346 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Human VEGF <sub>165</sub>  | 900-K10  | \$346 |
| Rat VEGF <sub>165</sub> 900-K436 \$346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Murine VEGF <sub>165</sub> | 900-K99  | \$346 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rat VEGF <sub>165</sub>    | 900-K436 | \$346 |

# TMB ELISA kits

Invitrogen<sup>™</sup> PeproTech<sup>™</sup> TMB ELISA development kits contain the key components required for quantitative measurement of natural or recombinant proteins in a sandwich ELISA format. Each PeproTech TMB ELISA development kit contains a capture antibody, a biotinylated detection antibody, a calibrated antigen standard, a streptavidin-HRP conjugate, and a kit-specific protocol.

Each standard PeproTech TMB ELISA development kit contains enough material to assay the target cytokine in approximately 1,000 ELISA plate wells.

#### PeproTech TMB ELISA kits

| Description               | Cat. No. | Price |
|---------------------------|----------|-------|
| Human BD-2                | 900-T172 | \$346 |
| Human/Murine/Rat BMP-2    | 900-T255 | \$346 |
| Human IFN-γ               | 900-T27  | \$346 |
| Murine IFN-γ              | 900-T98  | \$346 |
| Human IL-1a               | 900-T11  | \$346 |
| Human IL-1β               | 900-T95  | \$346 |
| Human IL-2                | 900-T12  | \$346 |
| Murine IL-2               | 900-T108 | \$346 |
| Human IL-4                | 900-T14  | \$346 |
| Murine IL-4               | 900-T49  | \$346 |
| Human IL-6                | 900-T16  | \$346 |
| Murine IL-6               | 900-T50  | \$346 |
| Human IL-8 (CXCL8)        | 900-T18  | \$346 |
| Murine IL-10              | 900-T53  | \$346 |
| Human IL-12               | 900-T96  | \$346 |
| Murine IL-12              | 900-T97  | \$346 |
| Human IL-17E              | 900-T234 | \$346 |
| Human IP-10 (CXCL10)      | 900-T39  | \$346 |
| Human MCP-1 (CCL2)        | 900-T31  | \$346 |
| Human MIP-1β (CCL4)       | 900-T36  | \$346 |
| Human SCF                 | 900-T34  | \$346 |
| Human TNF-α               | 900-T25  | \$346 |
| Murine TNF-a              | 900-T54  | \$346 |
| Rat TNF-a                 | 900-T73  | \$346 |
| Human VEGF <sub>165</sub> | 900-T10  | \$346 |

# Mini ABTS ELISA kits

Invitrogen<sup>™</sup> PeproTech<sup>™</sup> Mini ABTS ELISA development kits contain the key components required for quantitative measurement of natural or recombinant proteins in a sandwich ELISA format. Each PeproTech Mini ABTS ELISA development kit contains a capture antibody, a biotinylated detection antibody, a calibrated antigen standard, an egg white avidin-HRP conjugate, and a kit-specific protocol.

Each PeproTech Mini ABTS ELISA development kit contains enough material to assay the target cytokine in approximately 200 ELISA plate wells.

#### PeproTech Mini ABTS ELISA kits

| Description              | Cat. No. | Price |
|--------------------------|----------|-------|
| Human BD-1               | 900-M202 | \$108 |
| Human BD-2               | 900-M172 | \$108 |
| Human BD-3               | 900-M210 | \$108 |
| Human BD-4               | 900-M435 | \$108 |
| Human/Murine/Rat BMP-2   | 900-M255 | \$108 |
| Human sCD40 Ligand       | 900-M145 | \$108 |
| Rat CNTF                 | 900-M65  | \$108 |
| Human CTACK (CCL27)      | 900-M213 | \$108 |
| Human CTGF               | 900-M317 | \$108 |
| Human CXCL16             | 900-M230 | \$108 |
| Human EGF                | 900-M05  | \$108 |
| Rat EGF                  | 900-M390 | \$108 |
| Human Eotaxin-3 (CCL26)  | 900-M167 | \$108 |
| Murine Exodus-2 (CCL21)  | 900-M132 | \$108 |
| Human FGF-Basic          | 900-M08  | \$108 |
| Human G-CSF              | 900-M77  | \$108 |
| Murine G-CSF             | 900-M103 | \$108 |
| Human GM-CSF             | 900-M30  | \$108 |
| Murine GM-CSF            | 900-M55  | \$108 |
| Rat GRO/KC (CXCL1)       | 900-M57  | \$108 |
| Human GRO-a/MGSA (CXCL1) | 900-M38  | \$108 |
| Human GRO-β (CXCL2)      | 900-M120 | \$108 |
| Human Heregulin β-1      | 900-M316 | \$108 |
| Human ICAM-1             | 900-M464 | \$108 |
| Human IFN-γ              | 900-M27  | \$108 |
| Murine IFN-γ             | 900-M98  | \$108 |
| Rat IFN-y                | 900-M109 | \$108 |
| Human IGF-BP1            | 900-M315 | \$108 |
| Murine IGF-I             | 900-M170 | \$108 |
| Human IL-1a              | 900-M11  | \$108 |
| Murine IL-1a             | 900-M82  | \$108 |
| Human IL-1β              | 900-M95  | \$108 |
| Murine IL-1β             | 900-M47  | \$108 |
| Rat IL-1β                | 900-M91  | \$108 |
| Human IL-1RA             | 900-M474 | \$108 |
| Human IL-2               | 900-M12  | \$108 |
| Murine IL-2              | 900-M108 | \$108 |
| Rat IL-2                 | 900-M205 | \$108 |
| Murine IL-3              | 900-M48  | \$108 |
| Human IL-4               | 900-M14  | \$108 |
| Murine IL-4              | 900-M49  | \$108 |
| Human IL-5               | 900-M15  | \$108 |
|                          |          |       |
| Murine IL-5              | 900-M406 | \$108 |

## PeproTech Mini ABTS ELISA kits

| Description                         | Cat. No.   | Price |
|-------------------------------------|------------|-------|
| Murine IL-6                         | 900-M50    | \$108 |
| Rat IL-6                            | 900-M86    | \$108 |
| Human IL-7                          | 900-M17    | \$108 |
| Human IL-8 (CXCL8)                  | 900-M18    | \$108 |
| Human IL-10                         | 900-M21    | \$108 |
| Murine IL-10                        | 900-M53    | \$108 |
| Human IL-11                         | 900-M22    | \$108 |
| Human IL-12                         | 900-M96    | \$108 |
| Murine IL-12                        | 900-M97    | \$108 |
| Human IL-13                         | 900-M23    | \$108 |
| Murine IL-13                        | 900-M207   | \$108 |
| Murine IL-15                        | 900-M188   | \$108 |
| Human IL-17A                        | 900-M84    | \$108 |
| Murine IL-17A                       | 900-M392   | \$108 |
| Human IL-17E                        | 900-M234   | \$108 |
| Murine IL-21                        | 900-M368   | \$108 |
| Human IL-22                         | 900-1/1666 | \$108 |
| Murine IL-22                        |            | \$108 |
|                                     | 900-M257   |       |
| Human IL-31                         | 900-M347   | \$108 |
| Human IL-33<br>Human IP-10 (CXCL10) | 900-M398   | \$108 |
|                                     | 900-M39    | \$108 |
| Murine IP-10 (CXCL10)               | 900-M153   | \$108 |
| Rat IP-10 (CXCL10)                  | 900-M449   | \$108 |
| Murine JE/MCP-1 (CCL2)              | 900-M126   | \$108 |
| Murine KC (CXCL1)                   | 900-M127   | \$108 |
| Human Leptin                        | 900-M90    | \$108 |
| Human MCP-1 (CCL2)                  | 900-M31    | \$108 |
| Rat MCP-1 (CCL2)                    | 900-M59    | \$108 |
| Human MCP-2 (CCL8)                  | 900-M41    | \$108 |
| Murine M-CSF                        | 900-M245   | \$108 |
| Human Midkine                       | 900-M190   | \$108 |
| Human MIG (CXCL9)                   | 900-M87    | \$108 |
| Human MIP-1a (CCL3)                 | 900-M35    | \$108 |
| Murine MIP-1a (CCL3)                | 900-M125   | \$108 |
| Murine MIP-1β (CCL4)                | 900-M278   | \$108 |
| Murine MIP-2 (CXCL2)                | 900-M152   | \$108 |
| Human Neuroserpin                   | 900-M412   | \$108 |
| Human β-NGF                         | 900-M60    | \$108 |
| Human PDGF-BB                       | 900-M04    | \$108 |
| Human sRANK Ligand                  | 900-M142   | \$108 |
| Murine sRANK Ligand                 | 900-M233   | \$108 |
| Human RANTES (CCL5)                 | 900-M33    | \$108 |
| Murine RANTES (CCL5)                | 900-M124   | \$108 |
| Rat RANTES (CCL5)                   | 900-M72    | \$108 |
| Human Resistin                      | 900-M235   | \$108 |
| Human SCF                           | 900-M34    | \$108 |
| Rat SCF                             | 900-M258   | \$108 |
| Human SDF-1α (CXCL12)               | 900-M92    | \$108 |
| Human TIMP-1                        | 900-M438   | \$108 |
| Human TL-1A                         | 900-M290   | \$108 |
| Human TNF-α                         | 900-M25    | \$108 |
| Murine TNF-a                        | 900-M54    | \$108 |
| Rat TNF-a                           | 900-M73    | \$108 |
| Human TPO                           | 900-M44    | \$108 |
| Human sTRAIL/Apo2L                  | 900-M141   | \$108 |
| Human VEGF <sub>165</sub>           | 900-M10    | \$108 |
|                                     | 900-M99    | \$108 |
| Murine VEGF <sub>165</sub>          |            | 0100  |

## Mini TMB ELISA kits

Invitrogen<sup>™</sup> PeproTech<sup>™</sup> Mini TMB ELISA development kits contain the key components required for quantitative measurement of natural or recombinant proteins in a sandwich ELISA format. Each PeproTech Mini TMB ELISA development kit contains a capture antibody, a biotinylated detection antibody, a calibrated antigen standard, a streptavidin-HRP conjugate, and a kit-specific protocol.

Each PeproTech Mini TMB ELISA development kit contains enough material to assay the target cytokine in approximately 200 ELISA plate wells.

## Mini TMB ELISA kits

| Description               | Cat. No.  | Price |
|---------------------------|-----------|-------|
| Human BD-2                | 900-TM172 | \$108 |
| Human/Murine/Rat BMP-2    | 900-TM255 | \$108 |
| Human IFN-γ               | 900-TM27  | \$108 |
| Murine IFN-γ              | 900-TM98  | \$108 |
| Human IL-1a               | 900-TM11  | \$108 |
| Human IL-1β               | 900-TM95  | \$108 |
| Human IL-2                | 900-TM12  | \$108 |
| Murine IL-2               | 900-TM108 | \$108 |
| Human IL-4                | 900-TM14  | \$108 |
| Murine IL-4               | 900-TM49  | \$108 |
| Human IL-6                | 900-TM16  | \$108 |
| Murine IL-6               | 900-TM50  | \$108 |
| Human IL-8 (CXCL8)        | 900-TM18  | \$108 |
| Murine IL-10              | 900-TM53  | \$108 |
| Human IL-12               | 900-TM96  | \$108 |
| Murine IL-12              | 900-TM97  | \$108 |
| Human IL-17E              | 900-TM234 | \$108 |
| Human IP-10 (CXCL10)      | 900-TM39  | \$108 |
| Human MCP-1 (CCL2)        | 900-TM31  | \$108 |
| Human MIP-1β (CCL4)       | 900-TM36  | \$108 |
| Human SCF                 | 900-TM34  | \$108 |
| Human TNF-a               | 900-TM25  | \$108 |
| Murine TNF-a              | 900-TM54  | \$108 |
| Rat TNF-α                 | 900-TM73  | \$108 |
| Human VEGF <sub>165</sub> | 900-TM10  | \$108 |

## **ELISA** buffer kits

## PeproTech ELISA buffer kits

We offer both an Invitrogen<sup>™</sup> PeproTech<sup>™</sup> ABTS ELISA Buffer Kit and an Invitrogen<sup>™</sup> PeproTech<sup>™</sup> TMB ELISA Buffer Kit that have been specifically formulated for optimal performance when used in conjunction with PeproTech ABTS ELISA and TMB ELISA development kits, respectively. These buffer kits contain all of the necessary components to assay ten 96-well ELISA plates (included) and detailed handling instructions. All of the reagents have been filter-sterilized to minimize assay interference and maximize shelf life. These easy-to-use ELISA buffer kits can also be purchased as stand-alone products, since the plates included are not pre-coated with capture antibody. This format allows the researcher to develop and optimize an assay for use with their own capture and detection antibodies. The actual antibody concentrations and detection ranges of the ELISA will vary.

## PeproTech ABTS ELISA Buffer Kit contents:

- 20X plate coating buffer (PBS)
- 1X blocking buffer
- 20X sample diluent
- 20X wash buffer
- Ready-to-use ABTS liquid substrate
- 10 sterile, uncoated 96-well ELISA plates
- 50 plate sealing films
- Buffer handling instructions



## PeproTech TMB ELISA Buffer Kit contents:

- 20X plate coating buffer (PBS)
- 1X blocking buffer
- 20X sample diluent
- 20X wash buffer
- Ready-to-use TMB liquid substrate
- Ready-to-use stop solution
- 10 sterile, uncoated 96-well ELISA plates
- 50 plate sealing films
- Buffer handling instructions

| Description                     | Cat. No. | Price | Description                    | Cat. No. | Price |
|---------------------------------|----------|-------|--------------------------------|----------|-------|
| PeproTech ABTS ELISA Buffer Kit | 900-K00  | \$211 | PeproTech TMB ELISA Buffer Kit | 900-T00  | \$211 |

# QC testing requirements

## GMP

Our quality management system—from management of raw materials and equipment to facilities maintenance (environmental monitoring), manufacturing processes, internal audits, and inspection processes—is in compliance with relevant US FDA GMPs and all applicable regulatory and standards requirements.

We perform extensive quality control tests to verify that PeproTech PeproGMP cytokines meet rigorous standards for purity, identity, safety, activity, and consistency.

## Identity and purity

- N-terminal amino acid sequence analysis
- Molecular weight determination by mass spectrometry
- Reverse-phase HPLC (RP-HPLC) analysis
- SDS-PAGE with western blotting

## Protein content

- UV spectroscopy
- SDS-PAGE with western blotting (if applicable)

## Safety

- Residual E. coli DNA testing
- Sterility: beginning, middle, and end processes
- Low endotoxin
- Mycoplasma testing

## **Biological activity**

 Specific activity determined by product-specific *in vitro* bioassay, against reference standard and (when applicable) against WHO standards

## Documentation

- Certificate of Analysis
- Certificate of Origin
- Safety Data Sheet (SDS)

## **RUO cytokines**

PeproTech RUO cytokines are subjected to a rigorous set of quality control standards. Our quality assurance department ensures that the cytokines have consistent molecular weights, N-terminal sequences, purity, and biological activity. This quality control is dedicated to providing consistency between lots.

## Authenticity

RUO cytokine products are verified by N-terminal sequence analysis, SDS-PAGE, mass spectrometry, western blot analyses against standards, and, where possible, by RP-HPLC.

## **Biological activity**

Determined in the relevant bioassay.

## Endotoxin contamination

Tested by kinetic Limulus amebocyte lysate (LAL) assay.

## Protein content

Verified by UV spectroscopy, SDS-PAGE, and, where possible, by RP-HPLC.

## Purity

Verified by SDS-PAGE and, where possible, by RP-HPLC.

## Sterility

All products are filter-sterilized through a 0.2  $\mu m$  filter.

## QC testing requirements

## PeproTech antibody and ELISA development kits

PeproTech antibodies (monoclonal, polyclonal, and biotinylated) and ELISA development kits are screened for performance and quality in a variety of applications.

### Antibody content

Verified by UV spectroscopy and SDS-PAGE.

## ELISA

Tested by enzyme-linked immunosorbent assay (ELISA) for antibody–antigen detection and quantification of the antigen, using a solid-phase substrate such as a polystyrene plate, enzyme-coupled reagents, and additional detection materials. Extensive optimization and cross-reactivity testing are performed for ELISA development kit products.

#### Endotoxin contamination

Tested by kinetic LAL assay.

## Immunohistochemistry (IHC) (if applicable)

Tested with an immunocoloring assay (immunoenzymatic or immunofluorescent) for specific antibody–antigen recognition in a tissue or cell sample, using an enzyme-coupled reagent and other detection materials.

## Neutralization (if applicable)

Tested to determine the antibody concentration required for half-maximal inhibition ( $ND_{50}$ ) of the biological activity of the corresponding antigen.

## Sterility

All products are filter-sterilized through a 0.2 µm filter.

### Western blot

Tested by an immunoblot assay for antibody–antigen detection and quantification, using SDS-PAGE, nitrocellulose membrane transfer, an enzyme-coupled reagent, and other detection materials.

## Cell sorting tests (if applicable)

Fluorescence-based cell sorting is a specialized type of flow cytometry that utilizes fluorescent markers to identify and separate cell groups from a heterogeneous mixture.

## **Chemokine nomenclature**

|                         | Functional name                                             | Deepending call type                            |                              |
|-------------------------|-------------------------------------------------------------|-------------------------------------------------|------------------------------|
| Systematic name         | (mouse protein)                                             | Responding cell type<br>(mouse protein)         | Known receptor               |
| CXC chemokines          | (mouse protein)                                             | (mouse protein)                                 | Kilowii receptoi             |
| CXCL1                   | GRO1, GRO-α, MGSA, NAP-3 (KC)                               | PMN                                             | CXCR1, CXCR2                 |
| CXCL2                   | GR02, GR0-β, MIP2-α (MIP-2)                                 | PMN                                             | CXCR1, CXCR2                 |
| CXCL3                   | GR02, GR0-β, MIP2-α (MIP-2)<br>GR03, GR0-γ, MIP2-β (DCIP-1) | PMN                                             | CXCR2                        |
| CXCL4                   | PF-4, oncostatin-A                                          | PMN, Mo                                         | CXCR3B                       |
| CXCL4<br>CXCL5          | ENA-78                                                      | PMN, MO<br>PMN                                  | CXCR2                        |
| CXCL6                   | GCP-2, CKA-3 (LIX)                                          | PMN                                             | CXCR1, CXCR2                 |
| CXCL7                   | NAP-2, PBP, LDGF, MDGF                                      | PMN                                             | CXCR1, CXCR2                 |
| CXCL8                   | IL-8, GCP-1, NAP-1                                          | PMN, Bs                                         | CXCR1, CXCR2                 |
| CXCL9                   | MIG                                                         | actT [Th1], NK                                  | CXCR3                        |
| CXCL10                  | IP-10 (CRG-2)                                               | Mo, actT [Th1], NK                              | CXCR3                        |
| CXCL10<br>CXCL11        | I-TAC, IP-9                                                 |                                                 |                              |
| CXCL12                  |                                                             | actT [Th1], NK                                  | CXCR3, CXCR7                 |
|                         | SDF-1, SDF-1α/β, PBSF                                       | All cell types                                  | CXCR4, CXCR7                 |
| CXCL13                  | BCA-1, BLC                                                  | B, (Mo)                                         | CXCR5                        |
| CXCL14                  | BRAK, MIP-2G                                                | PMN, mDC (B, Mo)                                | Unknown                      |
| CXCL15                  | (Lungkine)                                                  | (PMN)                                           | Unknown                      |
| CXCL16                  | SR-PSOX                                                     |                                                 | CXCR6                        |
| CXCL17                  | VEGF co-regulated chemokine 1, DMC                          | Mo, iDC                                         | Unknown                      |
| C chemokines            |                                                             | <b>T</b>                                        | VOD4                         |
| XCL1                    | Lymphotactin, ATAC, SCM-1                                   | Tr                                              | XCR1                         |
| XCL2                    | SCM-1β                                                      | Tr                                              | XCR1                         |
| CX3C chemokines         | Events III in a second set in OVOO                          |                                                 | 0/0001                       |
| CX3CL1                  | Fractalkine, neurotactin, CX3C                              | Mo, actT, NK                                    | CX3CR1                       |
| CC chemokines           |                                                             |                                                 | 0000                         |
| CCL1                    | I-309 (TCA-3)                                               | iDC, actT [Th2], Mo (PMN)                       |                              |
| CCL2                    | MCP-1, MCAF, JE                                             | Bs, Mo, actT, NK, iDC                           | CCR2, CCR4                   |
| CCL3                    | MIP-1a, LD78a                                               | Eo, Mo, actT, NK, iDC (PMN)                     | CCR1, CCR4, CCR5             |
| CCL3L1                  |                                                             | Mo, actT, B                                     | CCR1, CCR3, CCR5             |
| CCL4                    | MIP-1β, LAG-1                                               | Mo, actT [Th1], NK, iDC                         | CCR5                         |
| CCL4L1                  | LAG-1 gene duplication                                      | Mo                                              | CCR1, CCR5                   |
| CCL5                    | RANTES                                                      | Eo, Bs, Mo, actT, NK, iDC, Tm                   | CCR1, CCR3, CCR4, CCR5       |
| CCL6                    | (C-10)                                                      | (Mo)                                            | CCR1                         |
| CCL7                    | MCP-3 (FIC)                                                 | Eo, Bs, Mo, actT, NK, iDC                       | CCR1, CCR2, CCR3             |
| CCL8                    | MCP-2                                                       | Eo, Bs, Mo, actT, NK, iDC                       | CCR1, CCR2B, CCR3, CCR5      |
| CCL9/10                 | (MIP-1γ, MRP-2)                                             | (PMN, actT)                                     | CCR1                         |
| CCL11                   | Eotaxin                                                     | Eo, Bs, actT [Th2], iDC                         | CCR3                         |
| CCL12                   | (MCP-5)                                                     | (Eo, Bs, Mo, actT, NK, iDC)                     | CCR2                         |
| CCL13                   | MCP-4, CKβ-10                                               | Eo, Bs, Mo, actT, NK, iDC                       | CCR1, CCR2, CCR3             |
| CCL14                   | HCC-1                                                       | Eo, Mo, T                                       | CCR1, CCR3, CCR5             |
| CCL15                   | MIP-5, MIP-1δ, HCC-2, LKN-1                                 | Mo, T                                           | CCR1, CCR3                   |
| CCL16                   | LEC, HCC-4                                                  | Mo, actT [Th1]                                  | CCR1                         |
| CCL17                   | TARC (ABCD-2)                                               | actT [Th2]                                      | CCR4                         |
| CCL18                   | MIP-4, DC-CK1, PARC, AMAC-1                                 | Tr, iDC                                         | Unknown                      |
| CCL19                   | MIP-3β, ELC, exodus-3, CKβ-11                               | Tr, actT, mDC                                   | CCR7                         |
| CCL20                   | MIP-3a, LARC, exodus-1                                      | Tm, B, iDC, PMN                                 | CCR6                         |
| CCL21                   | Exodus-2, 6Ckine, SLC                                       | Tr, actT, mDC                                   | CCR7                         |
| CCL22                   | MDC, STCP-1 (ABCD-1)                                        | Mo, actT [Th2], NK, iDC                         | CCR4                         |
| CCL23                   | MIP-3, MPIF-1, CKβ-8                                        | PMN, Mo, Tr                                     | CCR1                         |
| CCL24                   | Eotaxin-2, MPIF-2, CKβ-6                                    | Eo, Bs, actT [Th2], iDc, PMN, Tr                | CCR3                         |
| CCL25                   | TECK                                                        | Thymocytes, Tr, iDC                             | CCR9                         |
|                         |                                                             |                                                 |                              |
| CCL26                   | MIP-4a, eotaxin-3                                           | Eo, Bs, actT [Th2], iDC                         | CCR3                         |
| CCL26<br>CCL27<br>CCL28 | MIP-4a, eotaxin-3<br>CTACK, ILC, eskine<br>MEC              | Eo, Bs, actT [Th2], iDC<br>actT<br>actT, Tr, Eo | CCR3<br>CCR10<br>CCR3, CCR10 |

|                                                                                  |    | Кеу            |      |                   |    |                 |    |                      |     |             |     |                          |
|----------------------------------------------------------------------------------|----|----------------|------|-------------------|----|-----------------|----|----------------------|-----|-------------|-----|--------------------------|
| B B cells Bs Basophils T T cells NK Natural killer cells PMN Neutrophils iDC Imp | Tm | Memory T cells | actT | Activated T cells | Tr | Resting T cells | Eo | Eosinophils          | Мо  | Monocytes   | mDC | Mature dendritic cells   |
|                                                                                  | В  | B cells        | Bs   | Basophils         | т  | T cells         | NK | Natural killer cells | PMN | Neutrophils | iDC | Immature dendritic cells |

# **FGF** family

| Name  | Synonyms                                                                                                                    | Target cells (partial list)                                                    | Receptors                             | Function (partial list)                                                                                                                                          |
|-------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FGF1  | Heparin-binding growth<br>factor-1 (HBGF-1), ECGF-<br>beta (endothelial cell growth<br>factor-beta), FGF-acidic             | Mesenchymal,<br>neuroectodermal, and<br>endothelial cells                      | All FGF<br>receptors                  | Angiogenic <i>in vivo</i> , mitogenic <i>in vitro</i> ,<br>wound healing                                                                                         |
| FGF2  | Heparin-binding growth<br>factor-2 (HBGF-2), prostatropin,<br>FGF-basic                                                     | Mesenchymal,<br>neuroectodermal, and<br>endothelial cells                      | 1b, 1c, 2c,<br>3c, 4                  | Vasculogenesis, wound healing, angiogenesis, hematopoiesis, neuron survival                                                                                      |
| FGF3  | Int-2                                                                                                                       | Epithelial cells that express FGF receptor 2b                                  | 2b                                    | Mesoderm induction, angiogenesis, inner ear development                                                                                                          |
| FGF4  | Heparin secretory transforming<br>protein (HST-1), transforming<br>protein KS3, heparin-binding<br>growth factor-4 (HBGF-4) | Cells that express FGF receptors                                               | 1c, 2c, 3c, 4                         | Angiogenesis, vertebrate limb development, and development of stomach cancer                                                                                     |
| FGF5  | Heparin-binding growth factor-5<br>(HBGF-5), Smag-82                                                                        | Cells that express FGF receptors                                               | 1c, 2c                                | Hair growth and development                                                                                                                                      |
| FGF6  | Heparin-binding growth factor-6<br>(HBGF-6), HST-2                                                                          | Cells that express FGF receptors                                               | 1c, 2c, 4                             | Skeletal muscle development                                                                                                                                      |
| FGF7  | Heparin-binding growth factor-7<br>(HBGF-7), keratinocyte growth<br>factor (KGF)                                            | Keratinocytes and epithelial<br>cells that express FGF<br>receptor 2b          | 2b                                    | Keratinocyte growth factor, kidney and lung development, angiogenesis, and wound healing                                                                         |
| FGF8  | Androgen-induced growth<br>factor (AIGF), heparin-binding<br>growth factor-8 (HBGF-8)                                       | Mammary carinoma cells and<br>other cells that express FGF<br>receptors        | 2c, 3c, 4<br>(possibly<br>1c)         | Limb, central nervous system, and cardiac outflow tract development                                                                                              |
| FGF9  | Glia activating factor (GAF),<br>heparin-binding growth factor-9<br>(HBGF-9)                                                | Glial cells, astrocyte cells, and<br>other cells that express FGF<br>receptors | 1c, 2c, 3b,<br>3c, 4                  | Glia-activating factor, motor neuron survival, lung and testes development                                                                                       |
| FGF10 | FGFA, keratinocyte growth factor-2                                                                                          | Epithelial cells that express FGF receptor 2b                                  | 2b                                    | Wound healing, multi-organ development including limb and lung                                                                                                   |
| FGF11 | FGFB, fibroblast growth factor homologous factor-3 (FHF-3)                                                                  | Nuclear processes unrelated to the secreted FGFs                               | None                                  | Appears to be involved in nervous system development and function                                                                                                |
| FGF12 | FGFC, fibroblast growth factor<br>homologous factor-1 (FHF-1)                                                               | Nuclear processes unrelated to the secreted FGFs                               | None                                  | Appears to be involved in nervous system development and function                                                                                                |
| FGF13 | FGFD, fibroblast growth factor<br>homologous factor-2 (FHF-2)                                                               | Nuclear processes unrelated to the secreted FGFs                               | None                                  | Appears to be involved in nervous system development and function                                                                                                |
| FGF14 | FGFE, fibroblast growth factor homologous factor-4 (FHF-4)                                                                  | Nuclear processes unrelated to the secreted FGFs                               | None                                  | Regulates central nervous system development and function                                                                                                        |
| FGF15 | FGFF, identified in mouse not<br>human                                                                                      | Cells that express FGF receptor 4                                              | 4                                     | Regulator of cell division and patterning in<br>specific regions of embryonic brain, spinal cord,<br>and sensory organs                                          |
| FGF16 | FGFG                                                                                                                        | Cells that express FGF receptors                                               | 2с, 3с                                | Central nervous system development                                                                                                                               |
| FGF17 | FGFH                                                                                                                        | Cells that express FGF receptors                                               | 1c, 2c, 3c, 4                         | Signals induction and patterning of embryonic brain                                                                                                              |
| FGF18 | zFGF5, FGFI                                                                                                                 | Cells that express FGF receptors                                               | 1c, 2c, 3c, 4                         | An essential regulator of long bone and calvarial development                                                                                                    |
| FGF19 | FGFJ, identified in human not mouse                                                                                         | Cells that express FGF receptor 4                                              | 4                                     | Expressed during brain development and during<br>embryogenesis, regulates multiple metabolic<br>processes in adulthood                                           |
| FGF20 | FGFK                                                                                                                        | Epithelial and mesenchymal cells                                               | 1c, 2c, 3c                            | Expressed during limb and brain development                                                                                                                      |
| FGF21 | FGFL                                                                                                                        | Unknown at the time of printing                                                | Unknown at<br>the time of<br>printing | Expressed in liver and thymus, may play a role in type 2 diabetes                                                                                                |
| FGF22 | FGFM                                                                                                                        | Hair follicle keratinocytes                                                    |                                       | May be involved in cutaneous development and repair, and hair development                                                                                        |
| FGF23 | FGFN                                                                                                                        | Renal proximal epithelial cells                                                | 3с                                    | Expressed in brain and thymus, regulates<br>phosphate homeostasis, mutant in<br>hypophosphatemic rickets, regulates multiple<br>metabolic processes in adulthood |

# TGF-β superfamily

| Name               | Synonyms                                                                                                                                                                                     | Main function                                                                                                                                                                                                                 | Natural antagonists/<br>binding proteins                                                                               |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| TGF-β <sub>1</sub> | Differentiation inhibiting factor, cartilage-inducing factor                                                                                                                                 | Regulates cell proliferation, growth, differentiation, and motility.<br>Involved in adipogenesis, chondrogenesis, embryogenesis, tissue<br>remodeling, wound healing, and tumor formation.                                    | Follistatin, follistatin-like<br>related gene (FLRG), decorin,<br>alpha-2 macroglobulin                                |
| $TGF-\beta_2$      | Glioblastoma-derived T cell<br>suppressor factor, BSC-1,<br>cetermin, polyergin                                                                                                              | Regulates cell proliferation, growth, differentiation, and motility.<br>Involved in adipogenesis, chondrogenesis, embryogenesis, tissue<br>remodeling, wound healing, and tumor formation.                                    | Decorin, alpha-2<br>macroglobulin                                                                                      |
| $TGF-\beta_3$      | None                                                                                                                                                                                         | Regulates cell proliferation, growth, differentiation, and motility.<br>Involved in adipogenesis, chondrogenesis, embryogenesis, tissue<br>remodeling, wound healing, and tumor formation.                                    |                                                                                                                        |
| TGF-β <sub>4</sub> | Endometrial bleeding associated<br>factor beta-4, EBAF, lefty<br>preproprotein, LEFTA                                                                                                        | Essential for left-right (L-R) asymmetry determination of organ systems. Possible role in endometrial bleeding.                                                                                                               |                                                                                                                        |
| Inhibin A          | Inhibin alpha and beta A                                                                                                                                                                     | Inhibits secretion of follitropin by the pituitary gland, regulates<br>embryogenesis, osteogenesis, hematopoiesis, reproductive<br>physiology, and hormone secretion from the hypothalamic,<br>pituitary, and gonadal glands. |                                                                                                                        |
| Inhibin B          | Inhibin alpha and beta B                                                                                                                                                                     | Inhibits secretion of follitropin by the pituitary gland, regulates<br>embryogenesis, osteogenesis, hematopoiesis, reproductive<br>physiology, and hormone secretion from the hypothalamic,<br>pituitary, and gonadal glands. |                                                                                                                        |
| Activin A          | Activin beta-A, inhibin beta-1, FRP<br>(follicle-stimulating hormone-<br>releasing protein), FSH-releasing<br>extra protein, FSH-releasing factor,<br>EDF (erythroid differentiation factor) | Regulates embryogenesis, osteogenesis, hematopoiesis,<br>reproductive physiology, and hormone secretion from the<br>hypothalamic, pituitary, and gonadal glands.                                                              | Follistatin, follistatin-like<br>related gene (FLRG),<br>GASP-1, cerberus, alpha2<br>macroglobulin, DAN                |
| Activin AB         | Activin beta A and beta B                                                                                                                                                                    | Regulates embryogenesis, osteogenesis, hematopoiesis,<br>reproductive physiology, and hormone secretion from the<br>hypothalamic, pituitary, and gonadal glands.                                                              |                                                                                                                        |
| Activin B          | Activin beta-B, inhibin beta-2                                                                                                                                                               | Regulates embryogenesis, osteogenesis, hematopoiesis,<br>reproductive physiology, and hormone secretion from the<br>hypothalamic, pituitary, and gonadal glands.                                                              |                                                                                                                        |
| Activin C          | Activin beta-C, inhibin beta-C, blastocyst B1                                                                                                                                                | Regulates embryogenesis, osteogenesis, hematopoiesis,<br>reproductive physiology, and hormone secretion from the<br>hypothalamic, pituitary, and gonadal glands.                                                              |                                                                                                                        |
| Activin E          | Activin beta-E, inhibin beta-E                                                                                                                                                               | Regulates embryogenesis, osteogenesis, hematopoiesis,<br>reproductive physiology, and hormone secretion from the<br>hypothalamic, pituitary, and gonadal glands.                                                              |                                                                                                                        |
| BMP-2              | BMP-2A                                                                                                                                                                                       | Induces cartilage and bone formation, plays a role in cardiac morphogenesis.                                                                                                                                                  | Noggin, chordin, follistatin,<br>follistatin-like related gene<br>(FLRG), GASP-1, DAN,<br>cerberus, gremlin            |
| BMP-3              | Osteogenin, BMP-3A                                                                                                                                                                           | Induces cartilage and bone formation.                                                                                                                                                                                         |                                                                                                                        |
| BMP-3B             | GDF-10                                                                                                                                                                                       | Biological function unknown, but may play a role in differentiation of osteoblasts, augmenting BMP-2 activity.                                                                                                                |                                                                                                                        |
| BMP-4              | BMP2B (BMP2B1, BMP2B2,<br>Bmp2-rs1), DVR4                                                                                                                                                    | Induces cartilage and bone formation, involved in mesoderm induction, tooth development, limb formation, and fracture repair.                                                                                                 | Noggin, chordin, chordin-like/<br>neuralin/ventroptin, follistatin,<br>DAN, cerberus, gremlin                          |
| BMP-5              | None                                                                                                                                                                                         | Induces cartilage and bone formation.                                                                                                                                                                                         | Noggin, chordin-like/neuralin/<br>ventroptin, sclerostin/SOST                                                          |
| BMP-6              | VGR, Vg-1-related protein                                                                                                                                                                    | Induces cartilage and bone formation.                                                                                                                                                                                         | Noggin, chordin-like/<br>neuralin/ventroptin, follistatin,<br>follistatin-like related gene<br>(FLRG), sclerostin/SOST |
| BMP-7              | OP-1 (osteogenic protein-1)                                                                                                                                                                  | Induces cartilage and bone formation, involved in calcium<br>regulation and bone homeostasis. May act as an osteoinductive<br>factor responsible for epithelial osteogenesis.                                                 | Noggin, chordin, follistatin-<br>like related gene (FLRG),<br>DAN, cerberus, sclerostin/<br>SOST                       |
| BMP-8              | BMP-8a, OP-2<br>(osteogenic protein-2)                                                                                                                                                       | Induces cartilage and bone formation, involved in calcium regulation and bone homeostasis. May act as an osteoinductive factor responsible for epithelial osteogenesis.                                                       |                                                                                                                        |
| BMP-8b             | OP-2 (osteogenic protein-2)                                                                                                                                                                  | Stimulates cartilage and bone formation, implicated in calcium regulation and bone homeostasis.                                                                                                                               |                                                                                                                        |

# TGF-β superfamily

| Name                                 | Synonyms                                                                                                              | Main function                                                                                                                                                                                    | Natural antagonists/<br>binding proteins                  |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| BMP-9                                | GDF-2                                                                                                                 | May be involved in bone formation, regulates blood glucose<br>homeostasis, potential autocrine/paracrine mediator in the hepatic<br>reticuloendothelial system, involved in chondrogenesis.      |                                                           |
| BMP-10                               | None                                                                                                                  | Plays a crucial role in trabeculation of the embryonic heart.                                                                                                                                    |                                                           |
| BMP-11                               | GDF-11                                                                                                                | Involved in the patterning of both mesodermal and neural tissues<br>and in establishing the skeletal muscle. Acts globally to specific<br>positional identity along the anterior/posterior axis. | Follistatin, follistatin-like related gene (FLRG), GASP-1 |
| BMP-12                               | GDF-7, CDMP-3                                                                                                         | Induces the formation of tendon and ligament tissues.                                                                                                                                            |                                                           |
| BMP-13                               | GDF-6, CDMP-2                                                                                                         | Plays a role in cartilage homeostasis, involved in embryonic skeletal development, and formation of a tendon-like tissue.                                                                        | Noggin                                                    |
| BMP-14                               | GDF-5, CDMP-1                                                                                                         | Essential for limb-cartilage and limb-joint formation in developing mice. Involved in embryonic skeletal development.                                                                            | Noggin, DAN                                               |
| BMP-15                               | GDF-9B                                                                                                                | An oocyte-specific factor that regulates granulosa cell proliferation<br>and differentiation, and is essential<br>for normal follicular growth.                                                  |                                                           |
| GDF-1                                | Embryonic growth/<br>differentiation factor                                                                           | May be involved in mediating cell differentiation events during embryonic development.                                                                                                           |                                                           |
| GDF-2                                | BMP-9                                                                                                                 | Implicated in bone formation.                                                                                                                                                                    |                                                           |
| GDF-3                                | Vgr-2                                                                                                                 | Embryonal carcinoma stem cell–associated marker <i>in vitro</i> and <i>in vivo</i> .                                                                                                             |                                                           |
| GDF-5                                | CDMP-1, BMP-14                                                                                                        | Essential for limb-cartilage and limb-joint formation in developing mice. Involved in embryonic skeletal development.                                                                            | Noggin, DAN                                               |
| GDF-6                                | BMP-13, CDMP-2                                                                                                        | Plays a role in cartilage homeostasis involved in embryonic skeletal development and formation of a tendon-like tissue.                                                                          | Noggin                                                    |
| GDF-7                                | BMP-12, CDMP-3                                                                                                        | Induces the formation of tendon and ligament tissues.                                                                                                                                            |                                                           |
| GDF-8                                | Myostatin                                                                                                             | Regulates skeletal muscle mass.                                                                                                                                                                  | Follistatin, follistatin-like related gene (FLRG), GASP-1 |
| GDF-9                                | None                                                                                                                  | Essential for normal follicular growth.                                                                                                                                                          |                                                           |
| GDF-10                               | BMP-3B, BIP (bone inducing protein)                                                                                   | Biological function unknown, but may play a role in differentiation of osteoblasts, augmenting BMP-2 activity.                                                                                   |                                                           |
| GDF-11                               | BMP-11                                                                                                                | Involved in the patterning of both mesodermal and neural tissues<br>and in establishing the skeletal muscle. Acts globally to specific<br>positional identity along the anterior/posterior axis. | Follistatin, follistatin-like related gene (FLRG), GASP-1 |
| GDF-15                               | PLAB, placental TGFβ, prostate<br>differentiation factor (PDF), NRG-1,<br>MIC-1 (macrophage inhibiting<br>cytokine-1) | Possible mediator of placental control of embryonic development,<br>may act as an autocrine regulatory molecule.                                                                                 |                                                           |
| GDNF                                 | ATF (astrocyte-derived trophic factor)                                                                                | Promotes dopamine uptake and survival and morphological differentiation of midbrain neurons.                                                                                                     |                                                           |
| Artemin                              | ART, ARTN, enovin, neublastin                                                                                         | Supports the survival of all peripheral ganglia such as sympathetic, neural crest, and placodally derived sensory neurons, and dopaminergic midbrain neurons.                                    |                                                           |
| Neurturin                            | NTN, NRTN                                                                                                             | Promotes the development and survival of sympathetic and sensory neurons.                                                                                                                        |                                                           |
| Persephin                            | PSP, PSPN                                                                                                             | Promotes the survival of ventral midbrain dopaminergic neurons and motor neurons, and promotes ureteric bud branching.                                                                           |                                                           |
| LEFTY-1                              | LEFTYB, protein lefty B                                                                                               | Essential for left-right (L-R) asymmetry of organ systems.                                                                                                                                       |                                                           |
| LEFTY-2                              | LEFTYA, TGF- $\beta_4$ , protein lefty A                                                                              | Essential for left-right (L-R) asymmetry of organ systems.                                                                                                                                       |                                                           |
| AMH (anti-<br>Muellerian<br>hormone) | MIS, Muellerian inhibiting substance                                                                                  | Causes regression of the Muellerian duct, inhibits the growth of tumors derived from tissues of Muellerian duct origin.                                                                          |                                                           |
| Dorsalin<br>(chick)                  | Dorsalin-1, DSL-1                                                                                                     | Regulates cell differentiation within neural tube.                                                                                                                                               |                                                           |
| NODAL                                | None                                                                                                                  | Essential for mesoderm formation and subsequent organization of axial structures.                                                                                                                | Cerberus                                                  |

# Neurotrophin/neuropoietic cytokines

| Functional name                                                           | Synonyms                                                                                                                                    | Main neurotrophic functions<br>(partial list)                                                                                 | Disease/disorder relation<br>(partial list)                                                                                     | Receptors                              |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| β-NGF (beta-nerve<br>growth factor)                                       | NGF-β                                                                                                                                       | Supports survival and maintenance of neurons in the nervous systems.                                                          | Alzheimer's, Parkinson's,<br>diabetic peripheral<br>neuropathy, cardiovascular<br>diseases                                      | LNGFR, gp140/trk,<br>p75NTR            |
| BDNF (brain derived neurotrophic factor)                                  | Abrineurin                                                                                                                                  | Supports survival and maintenance of neurons in the central nervous system and peripheral nervous systems.                    | Parkinson's, diabetic<br>peripheral neuropathy, ALS,<br>Huntington's                                                            | LNGFR, gp145/<br>trkB, p75NTR          |
| NNT-1/BCSF-3<br>(novel neurotrophin-<br>1/B cell stimulating<br>factor-3) | Cardiotrophin-like cytokine<br>(CLCF1)                                                                                                      | Supports survival of motor and sympathetic neurons in chick embryos.                                                          | Multifocal neuronal<br>hypoplasia,<br>neurodegenerative eye<br>diseases (glaucoma), CISS<br>(cold-induced sweating<br>syndrome) | LIFR-β, gp130                          |
| NT-3<br>(neurotrophin-3)                                                  | NGF-2, HGNF                                                                                                                                 | Promotes growth and survival of new and existing neurons.                                                                     | Diabetic peripheral<br>neuropathy, periodontal<br>diseases                                                                      | Trk, TrkB, TrkC,<br>p75NTR             |
| NT-4<br>(neurotrophin-4)                                                  | NT-4/NT-5                                                                                                                                   | Promotes survival of peripheral sensory sympathetic neurons.                                                                  | Huntington's, glaucoma                                                                                                          | TrkB, p75NTR                           |
| GDNF (glial-derived neurotrophic factor)                                  | ATF-1                                                                                                                                       | Promotes dopamine uptake, survival, and<br>morphological differentiation of midbrain<br>neurons.                              | Parkinson's, ALS,<br>Huntington's                                                                                               | RET/GFR1a-4a                           |
| MANF<br>(mesencephalic<br>astrocyte-derived<br>neurotrophic factor)       | ARMET, arginine-rich<br>protein (ARP)                                                                                                       | Promotes survival, growth, and function of dopamine-specific neurons.                                                         | Parkinson's, cancer                                                                                                             | Unknown at time of printing            |
| CDNF (cerebral<br>dopamine<br>neurotrophic factor)                        | ARMETL1                                                                                                                                     | Promotes survival, growth, and function of dopamine-specific neurons.                                                         | Parkinson's                                                                                                                     | Unknown at time of printing            |
| CNTF (ciliary<br>neurotrophic factor)                                     | None                                                                                                                                        | Promotes survival of ciliary neurons, primary sensory neurons, motor neurons, basal forebrain neurons, and type 2 astrocytes. | ALS, Huntington's                                                                                                               | CNTFR-a                                |
| IL-6 (interleukin-6)                                                      | 26 kDa protein, IFN-β2,<br>B-cell differentiation factor<br>(BCDF), BSF-2, HPGF,<br>HSF, MGI-2                                              | Involved in inflammation associated with Alzheimer's disease.                                                                 | Diabetes, atherosclerosis,<br>Alzheimer's, depression,<br>rheumatoid arthritis,<br>systematic lupus, cancer, MS                 | IL-6Ra, gp130                          |
| Oncostatin M                                                              | OSM                                                                                                                                         | Involved in the regulation of neurogenesis.                                                                                   | Rheumatoid arthritis,<br>atherosclerosis, cancer,<br>TEL/JAK2 disease                                                           | LIFR-high affinity, gp130-low affinity |
| Cardiotrophin-1                                                           | CT-1                                                                                                                                        | Enhances survival of different neuronal populations.                                                                          | Motor neuron diseases<br>(MND), cardiovascular<br>diseases                                                                      | gp130, LIFR                            |
| IL-11 (interleukin-11)                                                    | AGIF (adipogenesis inhibitory factor)                                                                                                       | Survival of oligodendrocytes, involved in inflammation associated with MS.                                                    | Atherosclerosis, MS                                                                                                             | IL-11Ra, gp130                         |
| LIF (leukemia<br>inhibitory factor)                                       | Differentiation-stimulating<br>factor, D-factor,<br>melanoma-derived LPL<br>inhibitor (MLPLI)                                               | Promotes stimulation of differentiation of cholinergic nerves.                                                                | Systemic lupus, cancer,<br>epidermal hyperplasia in ALS                                                                         | LIFR                                   |
| Pleiotrophin                                                              | PTN, heparin affin<br>regulatory protein (HARP),<br>heparin-binding growth<br>factor-8 (HBGF-8),<br>osteoblast-specific factor-1<br>(OSF-1) | Promotes neurite outgrowth.                                                                                                   | Angiogenesis, Parkinson's,<br>cancer                                                                                            | ALK                                    |
| Midkine                                                                   | MK, NEGF-2                                                                                                                                  | Promotes neurite outgrowth.                                                                                                   | Alzheimer's, cancer                                                                                                             | ALK                                    |
| Neurturin                                                                 | NTN, NRTN                                                                                                                                   | Promotes survival of sympathetic and sensory neurons.                                                                         | Parkinson's                                                                                                                     | Prefers RET/GFR2a                      |
| Artemin                                                                   | ART, ARTN, enovin,<br>neublastin                                                                                                            | Promotes the survival of sympathetic, neural crest, placodally derived sensory neurons, and dopaminergic midbrain neurons.    | Chronic pain                                                                                                                    | Prefers RET/GFR3a                      |
| Persephin                                                                 | PSP, PSPN                                                                                                                                   | Promotes the survival of ventral midbrain dopaminergic neurons and motor neurons after sciatic nerve axotomy.                 | Alzheimer's                                                                                                                     | Prefers RET/GFR4a                      |

## **TNF** nomenclature

## TNF superfamily: ligands

| Nomenclature name | Functional names                                    |
|-------------------|-----------------------------------------------------|
| TNFSF1            | TNF-β, lymphotoxin-α (LT-α), TNFSF1B                |
| TNFSF2            | TNF-α, cachectin, DIF, necrosin, cytotoxin, TNFSF1A |
| TNFSF3            | Lymphotoxin-β (LT-β), TNF-C                         |
| TNFSF4            | OX40 ligand (OX40L), Gp34, TXGP1, CD252             |
| TNFSF5            | CD40 ligand (CD40L), TRAP, Gp39, CD154, T-BAM       |
| TNFSF6            | Fas ligand (FasL), APTL, APT1LG1, CD95L, CD178      |
| TNFSF7            | CD70, CD27 ligand (CD27L, CD27LG)                   |
| TNFSF8            | CD30 ligand (CD30L, CD30LG), CD153                  |
| TNFSF9            | 4-1BB ligand (4-1BBL), CD137L                       |
| TNFSF10           | TRAIL, Apo2 ligand (Apo2L), CD253                   |
| TNFSF11           | RANK ligand (RANKL), TRANCE, OPGL, ODF, CD254       |
| TNFSF12           | TWEAK, Apo3 ligand (Apo3L), DR3LG                   |
| TNFSF13           | APRIL, TALL-2, TRDL-1, CD256                        |
| TNFSF13B          | BAFF, BLyS, TALL-1, CD257, TNFSF20, THANK, ZTNF4    |
| TNFSF14           | LIGHT, HVEM-ligand (HVEM-L), CD258                  |
| TNFSF15           | TL1A, TL1, VEGI                                     |
| TNFSF18           | AITR ligand (AITRL), TL-6, GITR ligand (GITRL)      |

## TNF superfamily: receptors

| Nomenclature name | Functional names                                                       |
|-------------------|------------------------------------------------------------------------|
| TNFRSF1A          | TNF receptor type I (TNFR1), CD120a, p55, p60, TNFAR                   |
| TNFRSF1B          | TNF receptor type II (TNFR2), CD120b, p75, p80                         |
| TNFRSF3           | TNF receptor type III (TNFR3), lymphotoxin-β receptor, TNFR2-RP, TNFCR |
| TNFRSF4           | OX40L receptor, ACT35, TXGP1R, CD134                                   |
| TNFRSF5           | Bp50, CD40L receptor, CDw40, CD40                                      |
| TNFRSF6           | FASLG receptor, CD95, Apo-1                                            |
| TNFRSF6B          | DcR3, M68                                                              |
| TNFRSF7           | CD27, CD27L receptor, T14                                              |
| TNFRSF8           | CD30, CD30L receptor, Ki-1                                             |
| TNFRSF9           | 4-1BBL receptor, CDw137, CD137, T cell antigen ILA                     |
| TNFRSF10A         | DR4, Apo2, TRAIL receptor 1 (TRAILR1), CD261                           |
| TNFRSF10B         | DR5, TRAIL receptor 2 (TRAILR2), CD262, KILLER, TRICK2A, TRICKB        |
| TNFRSF10C         | DcR1, TRAIL receptor 3 (TRAILR3), CD263                                |
| TNFRSF10D         | DcR2, TRAIL receptor 4 (TRAILR4), CD264                                |
| TNFRSF11A         | RANK receptor (RANKR), ODFR, CD265, ODAR, TRANCE receptor              |
| TNFRSF11B         | Osteoprotegerin (OPG), OCIF, TR1                                       |
| TNFRSF12          | DR3, TNFRSF25, Apo3, AIR, TRAMP, LARD, WSL, WSL-1                      |
| TNFRSF13B         | TACI, CD267                                                            |
| TNFRSF13C         | BAFF receptor (BAFFR), CD268, BLyS receptor 3                          |
| TNFRSF14          | HVEM, TR2, HveA, CD270, ATAR                                           |
| TNFRSF16          | NGF receptor (NGFR), Gp80-LNGFR, p75NTR, p75 ICD, CD271                |
| TNFRSF17          | BCMA, CD269                                                            |
| TNFRSF18          | AITR, GITR, CD357                                                      |
| TNFRSF19          | TRADE                                                                  |
| TNFRSF19L         | RELT                                                                   |
| TNFRSF21          | DR6, CD358                                                             |
| TNFRSF22          | SOBa, TNFRH2                                                           |
| TNFRSF23          | SO, TNFRH1                                                             |

# **VEGF/PDGF** family

| Functional<br>name         | Synonyms                                                                                  | Expression (partial list)                                                                                                       | Function                                                                                                                             | Receptors (selected list)                           |
|----------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| VEGF-A <sub>121</sub>      | Vascular permeability factor<br>(VPF)                                                     | All vascularized tissues                                                                                                        | Angiogenesis, induces endothelial cell proliferation, and cell migration, osteoclastogenesis                                         | VEGFR-1,-2                                          |
| VEGF-A <sub>145</sub>      | Vascular permeability factor<br>(VPF)                                                     | All vascularized tissues                                                                                                        | Angiogenesis, induces endothelial<br>cell proliferation, vasculogenesis,<br>permeabilization of blood vessels,<br>osteoclastogenesis | VEGFR-1,-2, HSPG,<br>neuropilin-1                   |
| VEGF-A <sub>165</sub>      | Vascular permeability factor<br>(VPF)                                                     | All vascularized tissues                                                                                                        | Angiogenesis, induces endothelial<br>cell proliferation, vasculogenesis,<br>permeabilization of blood vessels,<br>osteoclastogenesis | VEGFR-1,-2, HSPG,<br>neuropilin-1,-2                |
| VEGF-A <sub>189</sub>      | Vascular permeability factor<br>(VPF)                                                     | All vascularized tissues                                                                                                        | Angiogenesis, induces endothelial cell proliferation, migration                                                                      | HSPG, neuropilin-1,-2                               |
| VEGF-A <sub>206</sub>      | Vascular permeability factor<br>(VPF)                                                     | All vascularized tissues                                                                                                        | Not determined at time of printing                                                                                                   | HSPG, neuropilin-1,-2                               |
| VEGF-B <sub>167</sub>      | VEGF-related factor (VRF)                                                                 | Heart, skeletal muscle, vascular smooth muscle cells                                                                            | Embryonic angiogenesis                                                                                                               | VEGFR-1, neuropilin-1                               |
| VEGF-B <sub>186</sub>      | VEGF-related factor (VRF)                                                                 | Heart, skeletal muscle, vascular smooth muscle cells                                                                            | Embryonic angiogenesis                                                                                                               | VEGFR-1, neuropilin-2                               |
| VEGF-C                     | VEGF-2, vascular<br>endothelial growth factor<br>related protein (VRP),<br>Flt4-ligand    | Neuroendocrine organs, lung,<br>heart, kidney, vascular smooth<br>muscle cells                                                  | Lymphangiogenesis and tumor<br>angiogenesis                                                                                          | VEGFR-2,-3, neuropilin-2                            |
| VEGF-D                     | c-Fos induced growth factor<br>(FIGF)                                                     | Neuroendocrine organs, lung,<br>heart, skeletal muscle, small<br>intestine, vascular smooth<br>muscle cells                     | Lymphangiogenesis and tumor<br>angiogenesis                                                                                          | VEGFR-2,-3                                          |
| VEGF-E<br>(Orf virus)      | None                                                                                      | Virus-derived                                                                                                                   | Induces endothelial proliferation, vascular permeability, angiogenesis                                                               | VEGFR-2, neuropilin-1 (binds<br>NZ2-VEGF-E variant) |
| VEGF-F<br>(snake<br>venom) | None                                                                                      | Snake venom                                                                                                                     | Induces endothelial proliferation vascular permeability, angiogenesis                                                                | VEGFR-2                                             |
| PIGF-1                     | Placenta growth factor-1,<br>PGFL, PGF, PIGF                                              | Placenta, thyroid, lung, goiter                                                                                                 | Angiogenesis, chemotactic towards<br>monocytes, wound healing, and tumor<br>formation                                                | VEGFR-1                                             |
| PIGF-2                     | Placenta growth factor-2,<br>PGFL                                                         | Placenta, thyroid, lung, goiter                                                                                                 | Angiogenesis, chemotactic towards monocytes, wound healing, and tumor formation                                                      | VEGFR-1, neuropilin-1,<br>neuropilin-2              |
| PIGF-3                     | Placenta growth factor-3,<br>PGFL                                                         | Placenta                                                                                                                        | Angiogenesis, chemotactic towards<br>monocytes, wound healing, and tumor<br>formation                                                | VEGFR-1                                             |
| PIGF-4                     | Placenta growth factor-4,<br>PGFL                                                         | Placenta, thyroid, lung, goiter                                                                                                 | Angiogenesis, chemotactic towards<br>monocytes, wound healing, and tumor<br>formation                                                | VEGFR-1                                             |
| PDGF-AA                    | Glioma-derived<br>growth factor (GDGF),<br>osteosarcoma-derived<br>growth factor (ODGF)   | α-granules, released upon platelet activation                                                                                   | Mitogenic factor, hyperplasia,<br>cell migration, embryonic neuron<br>development, angiogenesis                                      | PDGFR-α                                             |
| PDGF-BB                    | Glioma-derived<br>growth factor (GDGF),<br>osteosarcoma-derived<br>growth factor (ODGF)   | Heart, brain (substantia nigra),<br>placenta, fetal kidney                                                                      | Mitogenic factor, hyperplasia,<br>cell migration, embryonic neuron<br>development, angiogenesis                                      | PDGFR-α, PDGFR-β                                    |
| PDGF-AB                    | Glioma-derived<br>growth factor (GDGF),<br>osteosarcoma-derived<br>growth factor (ODGF) ) | α-granules, released upon platelet activation                                                                                   | Mitogenic factor, hyperplasia,<br>cell migration, embryonic neuron<br>development, angiogenesis                                      | PDGFR-α, PDGFR-β                                    |
| PDGF-CC                    | Fallotein, spinal cord–<br>derived growth factor<br>(SCDGF)                               | Retinal pigment epithelia,<br>fallopian tube, vascular smooth<br>muscle cells in kidney, platelets,<br>prostate, testis, uterus | Mitogenic factor, hyperplasia, cell<br>migration, embryonic development,<br>angiogenesis                                             | PDGFR-α                                             |
| PDGF-DD                    | Iris-expressed growth factor<br>(IEGF), spinal cord–derived<br>growth factor-B (SCDGF-B)  | Heart, pancreas, adrenal gland,<br>ovary, placenta, liver, kidney,<br>prostate, testis, small intestine                         | Mitogenic factor, hyperplasia, cell<br>migration, embryonic development,<br>angiogenesis                                             | PDGFR-β                                             |

## Antagonists of TGF-β ligands

| Natural TGF-β antagonists            | Structural features contained in the<br>antagonist polypeptide (MW)     | Known TGF-β binding partners                                   |  |  |
|--------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|--|--|
| Noggin                               | Unique noggin cysteine knot (26 kDa)                                    | BMP-2, -4 ,-5, -6, -7, -13/GDF-6, -14/GDF-5                    |  |  |
| Chordin                              | 4 CR/VWCC (chordin) domains, 3 SOG repeats (102 kDa)                    | BMP-2, -4, -7                                                  |  |  |
| Chordin-like/neuralin/ventroptin     | 3 chordin domains (51 kDa)                                              | BMP-4, -5, -6                                                  |  |  |
| Follistatin                          | 3 cysteine-rich follistatin (FS) and 3 kazal<br>domains (38 kDa)        | Activin, BMP-2, -4, -6, -7, myostatin/GDF-8,<br>GDF-11, TGF-β1 |  |  |
| Follistatin-like related gene (FLRG) | 2 FS and 2 kazal domains (28 kDa)                                       | Activin, BMP-6, -7, -11, myostatin/GDF-8,<br>GDF-11, TGF-β1    |  |  |
| GASP-1                               | 1 wap, 1 FS, 1 kazal, 1 IG-like, 2 kunitz, 1 netrin<br>domains (63 kDa) | Myostatin/GDF-8, GDF-11, activin, BMP-11                       |  |  |
| Follistatin-related protein (FSRP)   | 1 FS, 1 CR/VWRC, 2 EF-hand domains (35 kDa)                             | Activin, BMP-2, -6, -7                                         |  |  |
| DAN                                  | Unique DAN cysteine knot (19 kDa)                                       | BMP-2, -4, -7, -14/GDF-5                                       |  |  |
| Cerberus                             | DAN-like cysteine knot (30 kDa)                                         | BMP-2, -4, -7, activin, nodal                                  |  |  |
| Gremlin                              | DAN-like cysteine knot (21 kDa)                                         | BMP-2, -4, -7                                                  |  |  |
| Sclerostin/SOST                      | Unique sclerostin cysteine knot (24 kDa)                                | BMP-5, -6, -7                                                  |  |  |
| Decorin                              | Multiple leucine-rich repeats (40 kDa)                                  | TGFβ-1, -2                                                     |  |  |
| α-2 macroglobulin                    | Multiple proteinase inhibitor domains (163 kDa)                         | TGFβ-1, -2, activin, inhibin                                   |  |  |

## General characteristics of plasma lipoproteins

| LP particle | Size     | Density (g/mL)* | TG/CE ratio* | L/P ratio* | Associated apoproteins*              |
|-------------|----------|-----------------|--------------|------------|--------------------------------------|
| CM          | 1,000 nm | <0.95           | 28.83        | 65.66      | АроВ-48, АроА, АроС, АроЕ, АроН      |
| VLDL        | 70 nm    | 0.98            | 3.89         | 10.76      | <b>АроЕ</b> , АроВ-100, АроС         |
| IDL         | 40 nm    | 1.01            | 0.82         | 8.09       | <b>АроЕ</b> , АроВ-100, АроС         |
| LDL         | 20 nm    | 1.04            | 0.18         | 3.76       | <b>АроВ-100</b> , АроС, АроЕ, Аро(а) |
| HDL         | 10 nm    | 1.13            | 0.16         | 1.22       | ApoA-I, ApoC, ApoD, ApoE             |

\* Average values, TG: triglyceride, CE: cholesteryl ester, L/P: lipid/protein; bold represents the major apoprotein.

## **Classification of apoproteins**

| Apoprotein | MW       | Function and Comments                                                                                                                                   |  |  |
|------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ApoA-I     | 29 kDa   | Major protein of HDL, activates LCAT, high levels of ApoA-I are associated with a reduced risk of CHD.                                                  |  |  |
| ApoA-II    | 17.4 kDa | Primarily in HDL, inhibits hepatic lipase activity.                                                                                                     |  |  |
| ApoA-IV    | 46 kDa   | Present in fat-rich LPs.                                                                                                                                |  |  |
| ApoB-48    | 246 kDa  | Derived from ApoB-100 gene by RNA editing, found exclusively in CMs, lack the LDLR binding domain of ApoB-100.                                          |  |  |
| ApoB-100   | 513 kDa  | Major protein of LDL, binds to LDLR, high levels of ApoB-100 are associated with an increased risk of CAD.                                              |  |  |
| ApoC-I     | 7.6 kDa  | Appears to be involved in activation of LCAT.                                                                                                           |  |  |
| ApoC-II    | 8.9 kDa  | Activates LPL, deficiency of ApoC-II results in accumulation of CMs and high TG levels.                                                                 |  |  |
| ApoC-III   | 8.75 kDa | Inhibits LPL.                                                                                                                                           |  |  |
| ApoD       | 33 kDa   | Found only in HDL, closely associated with LCAT.                                                                                                        |  |  |
| ApoE       | 34 kDa   | Three known ApoE alleles (E2, E3, E4). Binds to LDLR, inhibits development of atherosclerosis, ApoE4 is associated with late-onset Alzheimer's disease. |  |  |

Note: Tables found on pages 42-49 are reflective of current knowledge.

# FAQs: RUO cytokines

The relevant information relating to each product appears on the Certificate of Analysis (CoA) that is shipped with the product. Please read this information carefully to obtain instructions for reconstitution and storage. If, after reading the CoA, you need additional information, please review the following set of questions and answers, or contact our quality assurance department at **PeproTech.QualityAssurance@thermofisher.com** or 800-436-9910, prompt number 4.

1. What should I know about the stability of your protein products?

Unless otherwise mentioned on the product's lot number–specific CoA, all of our products are formulated in such a manner that the lyophilized proteins are very stable at room temperature. However, we recommend storing lyophilized products at  $-20^{\circ}$ C to  $-80^{\circ}$ C. For reconstituted solutions of most products, we recommend short-term storage at 4°C.

For extended storage, the protein solution should be stored with a carrier protein or stabilizer (e.g., 0.1% BSA) in working aliquots and stored at  $-20^{\circ}$ C to  $-80^{\circ}$ C. Aliquots should be prepared to a concentration no lower than 1 µg/mL, and contain at least 10 µL, independent of concentration.

Please keep in mind that every freeze/thaw cycle may cause some denaturation of the protein; therefore, we do not recommend subjecting aliquots to more than a single freeze/thaw cycle.

2. What endotoxin level should be expected when purchasing PeproTech proteins?

For most PeproTech animal-free proteins, the endotoxin level is guaranteed to be less than 0.01 ng/µg of protein or 0.1 EU/µg. For most PeproTech non–animal-free proteins, the endotoxin level is guaranteed to be less than 0.1 ng/µg of protein, or 1 EU/µg. However, for many proteins, the actual measured endotoxin values are consistently below this stated endotoxin level. Please contact our technical service department (**PeproTech.QualityAssurance@thermofisher.com**)

for more information.

3. Why can't I see the protein pellet in the vial? Unlike many protein products available on the market, PeproTech products are not formulated with carrier proteins or other additives (e.g., BSA, HSA, sucrose). As a result, the small amounts of protein can be deposited on the vial during lyophilization as a thin, and sometimes invisible, film. Before opening, we recommend centrifuging each vial in a microcentrifuge for 20–30 seconds to drive any protein that may be lodged in the cap or on the side to the bottom of the vial. Our quality control procedures assure that each vial contains the correct amount of product.

- 4. Which cytokines show cross-species activity? With a few exceptions, most human cytokines are active on mouse cells. Many mouse cytokines are active on human cells, but may show lower specific activity than the corresponding human cytokine. The interferons, GM-CSF, IL-3, and IL-4 are known to be species-specific with very little, if any, activity on nonhomologous cells. In contrast, the FGFs and neurotrophins are very highly conserved and show excellent activity on cells of other animal species.
- 5. What is the relationship between the specific activity expressed as an  $ED_{50}$  and as units/mg?

While  $ED_{50}$  is defined as the cytokine concentration at which activity is 50% of the maximum response, specific activity is defined as a measurement of reaction rate (i.e., activity) in relation to the amount or mass of a substance. Specific activity units should only be used as a method of expressing potency and should only be calculated for sigmoidal dose-dependent curves. The formula for converting activity expressed as an  $ED_{50}$  in ng/mL to specific activity in units/mg is:

 $\frac{1 \times 10^{6}}{ED_{_{50}} (ng/mL)} = specific activity (units/mg)$ 

6. What is the relationship between specific activity units and International Units of activity?

There is no direct correlation or calculation between specific activity unit and International Unit (IU) values. IU values express a quantification of activity for the base amount of a substance in relation to an analogous reference standard with an internationally accepted unit of biological potency (i.e., IU/ng) that has been assigned based on an International Collaborative Study conducted by the World Health Organization (WHO). WHO Reference Standards are made available by the National Institute for Biological Standards and Control (NIBSC). Intended to simplify the comparison of activity of a substance obtained from different sources, IU measurements can vary as comparison methods are rarely the same between sources. A true direct comparison requires standardized methods of analysis in order to guarantee comparability of the substance's activity in relation to its mass across sources.

## 7. How do you obtain International Units of activity? Where possible, we obtain International Unit (IU) values through multiple side-by-side comparisons of our products against the analogous WHO Reference Standard within our biological activity assay. Performing multiple comparison tests allows us to account for any outliers due to possible variations with the assay (e.g. product, handling, assay protocol). Using the results of these comparisons, we can provide a reliable quantification of our product's activity in relation to the activity of the WHO Reference Standard.

# FAQs: GMP cytokines

 Can I use PeproTech PeproGMP cytokines for GMP manufacturing of investigational products, and for manufacturing commercial therapeutic products? Yes, PeproTech PeproGMP cytokines are intended for use in GMP manufacturing of investigational or marketed clinical products, such as cell therapy, gene therapy, tissueengineered products, combination products, or other advanced therapy medicinal products.

PeproTech PeproGMP cytokines are not, however, therapeutic products or excipients, and hence are not suitable for direct administration to humans. See USP Chapter <1043> Ancillary Materials for Cell, Gene, and Tissue-Engineered Products for more information, or contact our technical support.

2. What is the risk classification for PeproTech PeproGMP cytokines?

PeproTech PeproGMP Cytokines are classified as Tier 2 under USP Chapter <1043>:

**Tier 1:** Low-risk, highly qualified materials (therapeutic drug or biologic, medical device).

**Tier 2:** Low-risk, well-characterized materials, produced in compliance with GMPs, and intended to be used as ancillary materials.

**Tier 3:** Moderate risk, not for use as ancillary materials. **Tier 4:** High-risk materials.

3. Is the facility where PeproTech eproGMP cytokines are manufactured GMP certified by the FDA? Has the FDA inspected your manufacturing facilities? How would my QA department qualify PeproTech and PeproGMP cytokines?

The US FDA does not perform inspections or GMP certification of manufacturing facilities for ancillary reagents. In some countries, the national regulatory authority does inspect and certify GMP manufacturing facilities for all types of products, but FDA GMP inspections are limited to manufacturing facilities for therapeutic products and medical devices.

PeproTech PeproGMP cytokines are manufactured in accordance with relevant US GMPs, under a rigorous ISO 9001–compliant quality system. All aspects of manufacturing, testing, labeling, and packaging are stringently controlled, validated, and monitored by our QA. We provide detailed Certificates of Analysis and Certificates of Origin for all PeproGMP product lines. SDS documents are also available.

4. Are PeproTech PeproGMP cytokines animal origin–free and human origin–free?

Yes. Cytokines in the PeproGMP line are manufactured using defined media, enzymes, and chemicals, none of which are derived from animal or human origin.

- Do PeproTech PeproGMP cytokines have the same biological properties as the PeproTech research-grade cytokines I have been using for R&D studies? Yes. PeproGMP cytokines are functionally equivalent to their research-grade counterparts.
- 6. How are PeproTech PeproGMP cytokines shipped? The products are lyophilized, making them stable at a wide range of temperatures. Shipping is at ambient temperature. Upon request and at an additional cost, these products can be shipped on ice packs or dry ice.

## FAQs: ELISA

 What are the stabilities of the HRP conjugates included in PeproTech ELISA development kits (EDKs)? The avidin-HRP included in the ABTS kits is stable for up to 1 month at 2–8°C, and up to 2 years at –20°C.

The streptavidin-HRP included in the TMB kit is stable for at least 6 months at  $2-8^{\circ}$ C.

- 2. How can I find cross-reactivity information for a kit? We perform lot-specific, in-house cross-reactivity testing on our ELISA development kits. The results that have been collected from this testing are located on the kit's data sheet.
- 3. Is there any step of the ELISA protocol that can be left over the weekend?

The plate may be coated with the capture antibody on Friday, left at 4°C over the weekend, and resumed on Monday. Please note: changing incubation times may cause results to vary between plates.

4. Are PeproTech EDKs suitable to use with all sample types?

Although we have not tested all of our kits in every matrix available, they should be suitable for use in, but not limited to: serum, plasma, cell culture supernatant, urine, and saliva.

5. Is a stop solution necessary to stop the reaction? A stop solution is not needed when using avidin-HRP and ABTS. In general, reliable standard curves are obtained when either OD readings do not exceed 0.2 units for the zero standard concentrations. If a stop solution is desired, 1% sodium dodecyl sulfate (SDS) may be used to end the reaction. Stop solutions are not used in our laboratory with ABTS kits.

A stop solution (1 M HCl stop solution) is recommended with all PeproTech TMB kits.

6. In addition to the 620 nm correction wavelength recommended for the TMB EDKs, can other wavelengths be used?

A correction wavelength of 540, 570, 620, or 650 nm can be used with the TMB EDKs.

- 7. Can I use TMB with PeproTech ABTS EDKs? PeproTech ABTS EDKs are optimized using ABTS and are, therefore, best used in conjunction with this substrate. The kit can still be used in combination with TMB, but only after some adjustments have been made:
  - The avidin-HRP provided in the kit cannot be used with TMB; streptavidin must be purchased separately.
  - Dilutions of streptavidin will need to be optimized.
  - A stop solution is generally needed when using streptavidin and TMB. Refer to the manufacturer's data sheet.
  - The TMB reaction time, prior to the addition of stop solution, will need to be optimized.
  - The plate is to be read at 450 nm with a correction wavelength at 620 nm when using recommended plates.
- 8. Why is D-mannitol added to the EDK components? D-mannitol is added to the EDK components in order to aid in protein/antibody visualization. It does not alter ELISA results.
- 9. Can I use the curve on the EDK data sheet as my standard curve?

A separate standard curve must be run on each ELISA plate. In other words, the curve from one plate cannot be used for a different plate. The curve that we provide on the EDK data sheet is for demonstration purposes only, as achieved in our laboratory.

## 10. How do you generate your standard curve?

When an ELISA is run in our lab, a Molecular Devices<sup>™</sup> plate reader and SOFTmax<sup>™</sup> PRO software are used. This program uses the values that are received and generates a 4-parameter curve. The equation used by the program is: 4-P fit:

$$y = \frac{A - D}{1 + \left(\frac{x}{C}\right)^{B}} + D$$

x = concentration (pg/mL)y = OD (405 nm - 650 nm)

A, B, C, and D correspond to the 4 parameters.\*

 $^{\ast}$  For more detailed information regarding the parameters, please contact the technical support department.

# FAQs: Western transfer

- How long will immunostaining take when your western transfer protocol is followed? The western transfer process will take approximately 6 hours from transfer of proteins to visualization of bands.
- What type of molecular weight marker should be used? We use Invitrogen<sup>™</sup> Novex<sup>™</sup> Sharp Pre-stained Protein Standard for use in all western transfers performed inhouse, although this molecular weight marker does not have to be utilized. However, it is necessary that a pre-stained molecular weight marker is used when not utilizing the ECL detection method.
- 3. Is the addition of a positive control necessary in a western transfer?

Yes, in order to know exactly how the protein of interest will visualize on the western transfer you must add a positive control to your gel. When using PeproTech antibodies in a western transfer, we recommend using the corresponding PeproTech recombinant protein, which was the immunizing antigen for the antibody of choice.

4. Is agitation of the membrane essential during the incubation periods?

Yes, it is essential that the membrane be agitated during the incubation periods. If the membrane is not agitated, the antibodies, blocking buffer, and washing buffer may not affect the membrane evenly and can create splotchy or patchy background. It can also limit the detection of the proteins by the antibodies.

5. Is it necessary to include the blotting paper during the protein transfer step?

Yes, it is necessary to include the blotting paper as a barrier in the protein transfer step, as it helps protect the gel and membrane from any possible damage resulting from direct contact with the sponges, yet does not interfere with the electric current.

- 6. Does the color development system recommended in your western transfer protocol have to be used? No. There are many different color development systems that can be used for the visualization of the western transfer. However, the system that is chosen must be compatible with the enzyme conjugate being used. We use an alkaline phosphatase–linked secondary antibody. NBT/BCIP is suitable for use with this enzyme, and is therefore used for the visualization of our western transfers.
- Why are some western transfer results stronger than others when using different lots of the same antibody? Due to the nature of polyclonal antibodies, variability may be seen from lot to lot.

2023 price list *thermofisher.com/peprotech* 

8. Can an enzyme-conjugated primary antibody be used in a western transfer rather than using a primary/ secondary antibody system?

Yes, an enzyme-conjugated primary antibody can be used instead of utilizing a primary/secondary antibody system in your western transfer. However, by using a labeled secondary antibody that recognizes the antigen-specific primary antibody, there will be an amplification of the signal seen in a western transfer when compared to using the enzyme-conjugated primary antibody alone.

## **FAQs:** Antibodies

- Do you test for endotoxin in PeproTech antibodies? We do test our antibodies for endotoxin using the kinetic chromogenic LAL method. Please contact our quality assurance department (PeproTech.QualityAssurance@thermofisher.com) for more information.
- 2. Which isotype are PeproTech polyclonal antibodies? The polyclonal antibodies that we manufacture are predominantly IgG antibodies.
- How are your antibodies purified? All polyclonal and biotinylated polyclonal antibodies are antigen-affinity purified. Monoclonal antibody purification varies by product; please contact our quality assurance department (PeproTech.QualityAssurance@thermofisher.com) for more information.
- 4. Can you tell me what epitope your antibody binds to? We do not perform epitope mapping at this time. As a general guideline, a polyclonal mixture of antibodies will bind to multiple epitopes on the protein of interest while each monoclonal antibody will bind to a specific epitope.
- 5. Have PeproTech antibodies been tested in neutralization assays?

Neutralization testing is performed on a lot-to-lot basis for each antibody, when available. The results of this testing can be found on the product's corresponding data sheet.

6. Are PeproTech antibodies suitable for use in ELISA and western blot applications?

PeproTech antibodies are suitable for use in ELISA and western blot assays; please see our individual ELISA and western blot FAQ sections for more information regarding these applications. 7. What information should be known about the stability of your antibody products?

PeproTech antibodies are lyophilized from PBS. As such, they are stable at room temperature for at least 1 month. For longer periods, we recommend storing the lyophilized products at  $-20^{\circ}$ C to  $-80^{\circ}$ C.

For reconstituted solutions of the antibodies, we recommend short-term storage at 4°C. For long-term storage, the antibody solution should first be aliquoted (to avoid more than one freeze/thaw cycle) and stored frozen at  $-20^{\circ}$ C to  $-80^{\circ}$ C. Frozen aliquots of this antibody solution are stable for at least 6 months when kept at  $-20^{\circ}$ C to  $-80^{\circ}$ C.

8. Do PeproTech antibody products contain any carrier proteins or other additives?

No, we do not formulate polyclonal, biotinylated polyclonal, or monoclonal antibodies with additives or carrier proteins.

9. Will PeproTech antibodies work in immunohistochemistry and immunocytochemistry applications?

All antibodies that have been tested so far have been found to be suitable for these applications. Please contact our quality assurance department (**PeproTech.QualityAssurance@thermofisher.com**) for more information.

10. Will PeproTech antibodies recognize target proteins sold by other vendors?

PeproTech antibody products have high binding affinity towards the natural and/or recombinant versions of the corresponding proteins. However, due to lack of authenticity sometimes found in other vendors' proteins, we cannot guarantee that our antibodies will perform as well with these proteins.

11. Will PeproTech antibodies recognize target protein in complex biological fluids such as blood or serum? Yes. However, for samples that have a high content of interfering agents, the recognition will be less efficient and have a higher background, or a reduced signal-to-noise ratio may be seen.

## **Contact us**

## North America Corporate Headquarters

5 Cedarbrook Drive Cranbury, NJ 08512, USA Phone: (800) 436-9910 Fax: (609) 497-0321 PeproTech.QualityAssurance@thermofisher.com

### PeproTech Recombinant Proteins, Asia

12 Hamada Street, Tamar Building Rehovot 7670314, Israel Phone: +972 (0) 8 946 0948 Fax: +972 (0) 8 946 0861 PeproTech.InfoAsia@thermofisher.com

## PeproTech Recombinant Proteins, China

Room L03, 4F, North Building A1 No. 218, Xinghu St, SIP Suzhou, Jiangsu Province P. R. China, 215123 Hotline: 40000 53055 Phone: +86 512 6832 5983 Fax: +86 512 6832 5993 PeproTech.InfoChina@thermofisher.com

### **European Headquarters**

29 Margravine Road London W6 8LL, UK Phone: +44 (0)20 7610 3062 Fax: +44 (0)20 7610 3430 **PeproTech.InfoEC@thermofisher.com** 

## PeproTech Recombinant Proteins, France

12 rue Paul Chatrousse 92200 Neuilly-Sur-Seine France Phone: +33 (0)1 46 24 58 20 Fax: +33 (0)1 46 98 51 41 PeproTech.InfoFrance@thermofisher.com

## PeproTech Recombinant Proteins, Germany

Forum Winterhude Winterhuder Marktplatz 6-7a 22299 Hamburg, Deutschland Phone: +49 40 734 35 77 70 Fax: +49 40 734 35 77 79 PeproTech.InfoDE@thermofisher.com

## PeproTech Recombinant Proteins, Korea

10F, YTN Newsquare 76 Sangamsan-ro, Mapo-gu Seoul 03926, Korea Phone: +82 2 3210 2808 Fax: +82 2 3210 2835 PeproTech.InfoKorea@thermofisher.com

## **Ordering information**

## Hours of operation

Extended hours from 8:00 a.m. to 8:00 p.m. (ET), Monday through Friday. To place an order or request a catalog after business hours, or on weekends, you may send us a fax or visit our website.

Phone: (800) 436-9910, or (609) 497-0253

Fax: (609) 497-0321

Website: thermofisher.com/peprotech

Email PeproTech.CustomerService@thermofisher.com

PeproTech.QualityAssurance@thermofisher.com

PeproTech.Sales@thermofisher.com

## Method of payment

Payment terms are net thirty (30) days. 1.5% interest per month may be charged on past-due accounts.

VISA, MasterCard, and American Express are accepted.

## **Return policy**

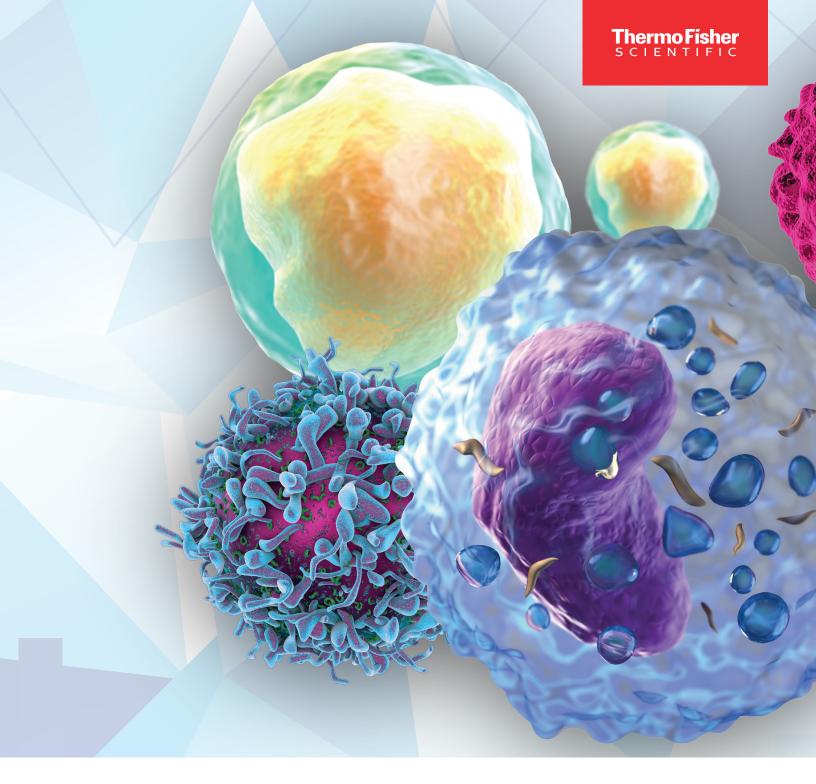
Any claim for credit or return goods must be made within 7 days of receipt. Thermo Fisher Scientific will not accept returned products without prior authorization. No credit or replacement will be issued without a return authorization number. All returns are subject to a 20% return fee unless the products are returned due to lack of conformity with the specifications on the Certificates of Analysis (CoAs) or data sheets. Please call customer service for return instructions.

## Warranty

Thermo Fisher warrants to the original purchaser that products sold substantially conform to specifications provided with shipped products and are free from material defects. This warranty does not extend to any product that has been altered in any way by personnel other than our employees or to any product that has been handled in a manner contrary to instructions included in product documentation. Thermo Fisher is not responsible for patent infringement or other violations that may occur with the use of these products. Thermo Fisher makes no warranty of a product's suitability for any purchaser's particular use; suitability for use must be determined by the purchaser or user of the products. All other warranties, expressed or implied, are disclaimed to the fullest extent allowed by law. Purchaser's sole remedy under the above warranty shall be replacement with a conforming product, a credit toward future purchases of PeproTech products or, at Thermo Fisher's sole discretion, a refund of the price of the product. If there is a question or concern, please contact our quality assurance department (PeproTech.QualityAssurance@thermofisher.com) immediately so we may assist you.

## Resale

In the absence of an expressed written agreement to the contrary, all products are sold by Thermo Fisher Scientific for the exclusive use of the purchaser and are not to be resold.


## Information changes

This catalog contains current information on PeproTech products. We reserve the right to discontinue sales of any product or to change product descriptions and/or formulations at any time without notice to purchasers.

## **Product use limitations**

PeproTech products are offered for research use only. Not for human use. Purchasers of PeproTech products agree to comply with the provisions of applicable federal, state, and local statutes, rules, regulations, ordinances, and orders with use of PeproTech products.

For comprehensive information about our products, visit our website at thermofisher.com/peprotech. Our website is an easy way to get up-to-date information on new products, references, technical documents, and much more. For your assurance, our website uses secure online ordering. All online orders obtained Monday through Friday during normal business hours (ET) will be processed the same day.





**PEPROTECH** PeproTech is now part of Thermo Fisher Scientific and these products are now sold under the Gibco brand.

## Learn more at thermofisher.com/peprotech

Intended use of the products mentioned varies. For specific intended use statements, please refer to the product label. © 2023 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. SOFTmax and Molecular Devices are trademarks of Molecular Devices Corporation. COL35478 0223

## gibco